{"title":"草本象牙介导长时间未燃烧的chaparral中的直接和间接相互作用","authors":"Laurel R. Fox, Stephen E. Potts","doi":"10.1002/ecm.1546","DOIUrl":null,"url":null,"abstract":"<p>Community interaction webs describe both direct and indirect interactions among species. Changes in direct interactions often become noticeable soon after a perturbation, but time lags in the responses of many species may delay the appearance of indirect effects and lead to temporal or spatial variation in interaction webs. Accurately identifying these shifts in the field requires time-specific, spatially differentiated interaction webs. We explore how variation in browsing affects interaction webs in a long-unburned chaparral shrubland near the central California coast. Most prior work in chaparral focused on rapid changes for <5 years after a wildfire that were assumed to determine community patterns until the next fire. Here, we report the results of the first 15 years of an ongoing experiment monitoring how interaction webs in long-unburned chaparral (at least 100 years postfire) respond to experimental variation in browsing by deer and rabbits on dominant shrubs (<i>Arctostaphylos pumila</i>, <i>Ceanothus cuneatus</i> var. <i>rigidus</i>, and <i>Ericameria ericoides</i>). We hypothesized that variation in browsing would directly affect foodplants, indirectly modify growth and survival of other shrubs, and impact habitat needed by herbaceous plants. We found a dynamic web of plant–herbivore and plant–plant interactions that responded rapidly to changes in deer browsing on <i>Ceanothus</i> followed by indirect interactions that continued developing over several years, affecting shrubs, open space, herbaceous plants, and small mammals. Experimental variation in the intensity of deer browsing led to temporal and spatial changes in interactions that produced three different community interaction webs. With deer, community webs were complex, having numerous direct and indirect interactions. Removing deer simplified the community web, changed outcomes of interactions, and reduced open space and herbaceous plant densities. Finally, changes in <i>Ceanothus</i> morphology without deer allowed woodrats to browse these shrubs, with negative impacts on <i>Ceanothus</i> growth and survival. General field observations also showed that all three alternative interaction webs occurred naturally at our fieldsite, varying across space and over time. Long-unburned chaparral communities browsed by deer maintain high biological diversity, but maintenance of this diversity involves many key direct and indirect biotic interactions.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"93 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1546","citationCount":"0","resultStr":"{\"title\":\"Herbivory mediates direct and indirect interactions in long-unburned chaparral\",\"authors\":\"Laurel R. Fox, Stephen E. Potts\",\"doi\":\"10.1002/ecm.1546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Community interaction webs describe both direct and indirect interactions among species. Changes in direct interactions often become noticeable soon after a perturbation, but time lags in the responses of many species may delay the appearance of indirect effects and lead to temporal or spatial variation in interaction webs. Accurately identifying these shifts in the field requires time-specific, spatially differentiated interaction webs. We explore how variation in browsing affects interaction webs in a long-unburned chaparral shrubland near the central California coast. Most prior work in chaparral focused on rapid changes for <5 years after a wildfire that were assumed to determine community patterns until the next fire. Here, we report the results of the first 15 years of an ongoing experiment monitoring how interaction webs in long-unburned chaparral (at least 100 years postfire) respond to experimental variation in browsing by deer and rabbits on dominant shrubs (<i>Arctostaphylos pumila</i>, <i>Ceanothus cuneatus</i> var. <i>rigidus</i>, and <i>Ericameria ericoides</i>). We hypothesized that variation in browsing would directly affect foodplants, indirectly modify growth and survival of other shrubs, and impact habitat needed by herbaceous plants. We found a dynamic web of plant–herbivore and plant–plant interactions that responded rapidly to changes in deer browsing on <i>Ceanothus</i> followed by indirect interactions that continued developing over several years, affecting shrubs, open space, herbaceous plants, and small mammals. Experimental variation in the intensity of deer browsing led to temporal and spatial changes in interactions that produced three different community interaction webs. With deer, community webs were complex, having numerous direct and indirect interactions. Removing deer simplified the community web, changed outcomes of interactions, and reduced open space and herbaceous plant densities. Finally, changes in <i>Ceanothus</i> morphology without deer allowed woodrats to browse these shrubs, with negative impacts on <i>Ceanothus</i> growth and survival. General field observations also showed that all three alternative interaction webs occurred naturally at our fieldsite, varying across space and over time. Long-unburned chaparral communities browsed by deer maintain high biological diversity, but maintenance of this diversity involves many key direct and indirect biotic interactions.</p>\",\"PeriodicalId\":11505,\"journal\":{\"name\":\"Ecological Monographs\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2022-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1546\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Monographs\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1546\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1546","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Herbivory mediates direct and indirect interactions in long-unburned chaparral
Community interaction webs describe both direct and indirect interactions among species. Changes in direct interactions often become noticeable soon after a perturbation, but time lags in the responses of many species may delay the appearance of indirect effects and lead to temporal or spatial variation in interaction webs. Accurately identifying these shifts in the field requires time-specific, spatially differentiated interaction webs. We explore how variation in browsing affects interaction webs in a long-unburned chaparral shrubland near the central California coast. Most prior work in chaparral focused on rapid changes for <5 years after a wildfire that were assumed to determine community patterns until the next fire. Here, we report the results of the first 15 years of an ongoing experiment monitoring how interaction webs in long-unburned chaparral (at least 100 years postfire) respond to experimental variation in browsing by deer and rabbits on dominant shrubs (Arctostaphylos pumila, Ceanothus cuneatus var. rigidus, and Ericameria ericoides). We hypothesized that variation in browsing would directly affect foodplants, indirectly modify growth and survival of other shrubs, and impact habitat needed by herbaceous plants. We found a dynamic web of plant–herbivore and plant–plant interactions that responded rapidly to changes in deer browsing on Ceanothus followed by indirect interactions that continued developing over several years, affecting shrubs, open space, herbaceous plants, and small mammals. Experimental variation in the intensity of deer browsing led to temporal and spatial changes in interactions that produced three different community interaction webs. With deer, community webs were complex, having numerous direct and indirect interactions. Removing deer simplified the community web, changed outcomes of interactions, and reduced open space and herbaceous plant densities. Finally, changes in Ceanothus morphology without deer allowed woodrats to browse these shrubs, with negative impacts on Ceanothus growth and survival. General field observations also showed that all three alternative interaction webs occurred naturally at our fieldsite, varying across space and over time. Long-unburned chaparral communities browsed by deer maintain high biological diversity, but maintenance of this diversity involves many key direct and indirect biotic interactions.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.