Yun Wu, Azhagumuthu Muthukrishnan, Shinsuke Nagata, Yuta Nabae
{"title":"n掺杂碳和fe - n掺杂碳电催化剂氧还原反应固有速率常数的Tafel斜率分析","authors":"Yun Wu, Azhagumuthu Muthukrishnan, Shinsuke Nagata, Yuta Nabae","doi":"10.1007/s10563-022-09381-9","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen-doped carbon with and without Fe additives is a promising alternative for commercial Pt/C catalysts for the oxygen reduction reaction (ORR) in proton and anion exchange membrane fuel cells. To understand the nature of the rate-determining steps (RDSs) of the ORR over newly developed catalysts, the analysis of the Tafel slopes of ORR voltammograms is beneficial for elucidating the number of electrons involved in the RDS. Conventionally, the Tafel slope is evaluated from the measured total current, which involves several different reaction pathways: the four-electron pathway from O<sub>2</sub> to H<sub>2</sub>O described with a kinetic constant <i>k</i><sub>1</sub>, the two-electron pathway from O<sub>2</sub> to H<sub>2</sub>O<sub>2</sub> with <i>k</i><sub>2</sub>, and the two-electron pathway from H<sub>2</sub>O<sub>2</sub> to H<sub>2</sub>O with <i>k</i><sub>3</sub>. This method provides reasonable Tafel slopes as long as the measured ORR is selective to a particular reaction pathway, such as the four-electron pathway over a Pt/C catalyst; however, typical Fe/N/C and N/C catalysts have mixed reaction pathways and analyzing the Tafel slopes from the total current does not provide meaningful information. To address this, we propose a new methodology for analyzing Tafel slopes. In this study, the measured ORR currents were converted into inherent kinetic constants (<i>k</i><sub>1</sub><sup>0</sup>, <i>k</i><sub>2</sub><sup>0</sup>, and <i>k</i><sub>3</sub><sup>0</sup>) using the Nabae model, which was previously developed by our group, and the Tafel plots for <i>k</i><sub>1</sub><sup>0</sup>, <i>k</i><sub>2</sub><sup>0</sup>, and <i>k</i><sub>3</sub><sup>0</sup> were analyzed to determine the Tafel slopes of each reaction pathway. Four ORR systems (Fe/N/C and N/C catalysts in acid and base) were analyzed using the proposed method, and the differences in the reaction mechanisms were successfully reflected in the determined parameters.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 1","pages":"84 - 94"},"PeriodicalIF":2.1000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10563-022-09381-9.pdf","citationCount":"3","resultStr":"{\"title\":\"Tafel Slope Analysis from Inherent Rate Constants for Oxygen Reduction Reaction Over N-doped Carbon and Fe–N-doped Carbon Electrocatalysts\",\"authors\":\"Yun Wu, Azhagumuthu Muthukrishnan, Shinsuke Nagata, Yuta Nabae\",\"doi\":\"10.1007/s10563-022-09381-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrogen-doped carbon with and without Fe additives is a promising alternative for commercial Pt/C catalysts for the oxygen reduction reaction (ORR) in proton and anion exchange membrane fuel cells. To understand the nature of the rate-determining steps (RDSs) of the ORR over newly developed catalysts, the analysis of the Tafel slopes of ORR voltammograms is beneficial for elucidating the number of electrons involved in the RDS. Conventionally, the Tafel slope is evaluated from the measured total current, which involves several different reaction pathways: the four-electron pathway from O<sub>2</sub> to H<sub>2</sub>O described with a kinetic constant <i>k</i><sub>1</sub>, the two-electron pathway from O<sub>2</sub> to H<sub>2</sub>O<sub>2</sub> with <i>k</i><sub>2</sub>, and the two-electron pathway from H<sub>2</sub>O<sub>2</sub> to H<sub>2</sub>O with <i>k</i><sub>3</sub>. This method provides reasonable Tafel slopes as long as the measured ORR is selective to a particular reaction pathway, such as the four-electron pathway over a Pt/C catalyst; however, typical Fe/N/C and N/C catalysts have mixed reaction pathways and analyzing the Tafel slopes from the total current does not provide meaningful information. To address this, we propose a new methodology for analyzing Tafel slopes. In this study, the measured ORR currents were converted into inherent kinetic constants (<i>k</i><sub>1</sub><sup>0</sup>, <i>k</i><sub>2</sub><sup>0</sup>, and <i>k</i><sub>3</sub><sup>0</sup>) using the Nabae model, which was previously developed by our group, and the Tafel plots for <i>k</i><sub>1</sub><sup>0</sup>, <i>k</i><sub>2</sub><sup>0</sup>, and <i>k</i><sub>3</sub><sup>0</sup> were analyzed to determine the Tafel slopes of each reaction pathway. Four ORR systems (Fe/N/C and N/C catalysts in acid and base) were analyzed using the proposed method, and the differences in the reaction mechanisms were successfully reflected in the determined parameters.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":\"27 1\",\"pages\":\"84 - 94\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10563-022-09381-9.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-022-09381-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-022-09381-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tafel Slope Analysis from Inherent Rate Constants for Oxygen Reduction Reaction Over N-doped Carbon and Fe–N-doped Carbon Electrocatalysts
Nitrogen-doped carbon with and without Fe additives is a promising alternative for commercial Pt/C catalysts for the oxygen reduction reaction (ORR) in proton and anion exchange membrane fuel cells. To understand the nature of the rate-determining steps (RDSs) of the ORR over newly developed catalysts, the analysis of the Tafel slopes of ORR voltammograms is beneficial for elucidating the number of electrons involved in the RDS. Conventionally, the Tafel slope is evaluated from the measured total current, which involves several different reaction pathways: the four-electron pathway from O2 to H2O described with a kinetic constant k1, the two-electron pathway from O2 to H2O2 with k2, and the two-electron pathway from H2O2 to H2O with k3. This method provides reasonable Tafel slopes as long as the measured ORR is selective to a particular reaction pathway, such as the four-electron pathway over a Pt/C catalyst; however, typical Fe/N/C and N/C catalysts have mixed reaction pathways and analyzing the Tafel slopes from the total current does not provide meaningful information. To address this, we propose a new methodology for analyzing Tafel slopes. In this study, the measured ORR currents were converted into inherent kinetic constants (k10, k20, and k30) using the Nabae model, which was previously developed by our group, and the Tafel plots for k10, k20, and k30 were analyzed to determine the Tafel slopes of each reaction pathway. Four ORR systems (Fe/N/C and N/C catalysts in acid and base) were analyzed using the proposed method, and the differences in the reaction mechanisms were successfully reflected in the determined parameters.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.