{"title":"敏捷高功率激光GHz飞秒处理","authors":"É. Audouard, G. Bonamis, C. Hönninger, E. Mottay","doi":"10.1515/aot-2021-0029","DOIUrl":null,"url":null,"abstract":"Abstract Bursts of GHz repetition rate pulses can significantly improve the ablation efficiency of femtosecond lasers. Depending on the process conditions, thermal mechanisms can be promoted and controlled. GHz ablation therefore combines thermal and non-thermal ablation mechanisms. With an optimal choice of the burst duration, the non-thermal ablation can be highly enhanced by a heating phase due to the first pulses in the burst. The GHz burst mode can be considered as a key function for the “agility” of new high-power lasers.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"GHz femtosecond processing with agile high-power laser\",\"authors\":\"É. Audouard, G. Bonamis, C. Hönninger, E. Mottay\",\"doi\":\"10.1515/aot-2021-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bursts of GHz repetition rate pulses can significantly improve the ablation efficiency of femtosecond lasers. Depending on the process conditions, thermal mechanisms can be promoted and controlled. GHz ablation therefore combines thermal and non-thermal ablation mechanisms. With an optimal choice of the burst duration, the non-thermal ablation can be highly enhanced by a heating phase due to the first pulses in the burst. The GHz burst mode can be considered as a key function for the “agility” of new high-power lasers.\",\"PeriodicalId\":46010,\"journal\":{\"name\":\"Advanced Optical Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aot-2021-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2021-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
GHz femtosecond processing with agile high-power laser
Abstract Bursts of GHz repetition rate pulses can significantly improve the ablation efficiency of femtosecond lasers. Depending on the process conditions, thermal mechanisms can be promoted and controlled. GHz ablation therefore combines thermal and non-thermal ablation mechanisms. With an optimal choice of the burst duration, the non-thermal ablation can be highly enhanced by a heating phase due to the first pulses in the burst. The GHz burst mode can be considered as a key function for the “agility” of new high-power lasers.
期刊介绍:
Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.