{"title":"快速渐进多边形近似在线笔画","authors":"Mohammad Tanvir Parvez","doi":"10.1016/j.gmod.2023.101200","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a fast and progressive polygonal approximation algorithm for online strokes. A stroke is defined as a sequence of points between a pen-down and a pen-up. The proposed method generates polygonal approximations progressively as the user inputs the stroke. The proposed algorithm is suitable for real time shape modeling and retrieval. The number of operations used in the proposed algorithm is bounded by O(<em>n</em>), where <em>n</em> is the number of points in a stroke. Detailed experimental results show that the proposed method is not only fast, but also accurate enough compared to other reported algorithms.</p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"129 ","pages":"Article 101200"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast progressive polygonal approximations for online strokes\",\"authors\":\"Mohammad Tanvir Parvez\",\"doi\":\"10.1016/j.gmod.2023.101200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a fast and progressive polygonal approximation algorithm for online strokes. A stroke is defined as a sequence of points between a pen-down and a pen-up. The proposed method generates polygonal approximations progressively as the user inputs the stroke. The proposed algorithm is suitable for real time shape modeling and retrieval. The number of operations used in the proposed algorithm is bounded by O(<em>n</em>), where <em>n</em> is the number of points in a stroke. Detailed experimental results show that the proposed method is not only fast, but also accurate enough compared to other reported algorithms.</p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"129 \",\"pages\":\"Article 101200\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070323000309\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070323000309","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Fast progressive polygonal approximations for online strokes
This paper presents a fast and progressive polygonal approximation algorithm for online strokes. A stroke is defined as a sequence of points between a pen-down and a pen-up. The proposed method generates polygonal approximations progressively as the user inputs the stroke. The proposed algorithm is suitable for real time shape modeling and retrieval. The number of operations used in the proposed algorithm is bounded by O(n), where n is the number of points in a stroke. Detailed experimental results show that the proposed method is not only fast, but also accurate enough compared to other reported algorithms.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.