A. Ramos-Soto, Ángel Dacal-Nieto, Gonzalo Martín Alcrudo, Gabriella Mosquera, J. J. Areal
{"title":"基于过程挖掘技术的自动导引车性能分析","authors":"A. Ramos-Soto, Ángel Dacal-Nieto, Gonzalo Martín Alcrudo, Gabriella Mosquera, J. J. Areal","doi":"10.1108/dta-02-2023-0054","DOIUrl":null,"url":null,"abstract":"PurposeProcess mining has emerged in the last decade as one of the most promising tools to discover and understand the actual execution of processes. This paper addresses the application of process mining techniques to analyze the performance of automatic guided vehicles (AGVs) in one of the Body in White circuits of the factory that Stellantis has in Vigo, Spain.Design/methodology/approachStandard process mining discovery and conformance algorithms are applied to analyze the different AGV execution paths, their lead times, main sources and identify any unexpected potential situations, such as unexpected paths or loops.FindingsResults show that this method provides very useful insights which are not evident for logistics technicians. Even with such automated devices, where the room for decreased efficiency can be apparently small, process mining shows there are cases where unexpected situations occur, leading to an increase in circuit times and different variants for the same route, which pave the road for an actual improvement in performance and efficiency.Originality/valueThis paper provides evidence of the usefulness of applying process mining in manufacturing processes. Practical applications of process mining have traditionally been focused on processes related to services and management, such as order to cash and purchase to pay in enterprise resource planning software. Despite its potential for use in industrial manufacturing, such contributions are scarce in the current state of the art and, as far as we are aware of, do not fully justify its application.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of automated guided vehicles performance based on process mining techniques\",\"authors\":\"A. Ramos-Soto, Ángel Dacal-Nieto, Gonzalo Martín Alcrudo, Gabriella Mosquera, J. J. Areal\",\"doi\":\"10.1108/dta-02-2023-0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeProcess mining has emerged in the last decade as one of the most promising tools to discover and understand the actual execution of processes. This paper addresses the application of process mining techniques to analyze the performance of automatic guided vehicles (AGVs) in one of the Body in White circuits of the factory that Stellantis has in Vigo, Spain.Design/methodology/approachStandard process mining discovery and conformance algorithms are applied to analyze the different AGV execution paths, their lead times, main sources and identify any unexpected potential situations, such as unexpected paths or loops.FindingsResults show that this method provides very useful insights which are not evident for logistics technicians. Even with such automated devices, where the room for decreased efficiency can be apparently small, process mining shows there are cases where unexpected situations occur, leading to an increase in circuit times and different variants for the same route, which pave the road for an actual improvement in performance and efficiency.Originality/valueThis paper provides evidence of the usefulness of applying process mining in manufacturing processes. Practical applications of process mining have traditionally been focused on processes related to services and management, such as order to cash and purchase to pay in enterprise resource planning software. Despite its potential for use in industrial manufacturing, such contributions are scarce in the current state of the art and, as far as we are aware of, do not fully justify its application.\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-02-2023-0054\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-02-2023-0054","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Analysis of automated guided vehicles performance based on process mining techniques
PurposeProcess mining has emerged in the last decade as one of the most promising tools to discover and understand the actual execution of processes. This paper addresses the application of process mining techniques to analyze the performance of automatic guided vehicles (AGVs) in one of the Body in White circuits of the factory that Stellantis has in Vigo, Spain.Design/methodology/approachStandard process mining discovery and conformance algorithms are applied to analyze the different AGV execution paths, their lead times, main sources and identify any unexpected potential situations, such as unexpected paths or loops.FindingsResults show that this method provides very useful insights which are not evident for logistics technicians. Even with such automated devices, where the room for decreased efficiency can be apparently small, process mining shows there are cases where unexpected situations occur, leading to an increase in circuit times and different variants for the same route, which pave the road for an actual improvement in performance and efficiency.Originality/valueThis paper provides evidence of the usefulness of applying process mining in manufacturing processes. Practical applications of process mining have traditionally been focused on processes related to services and management, such as order to cash and purchase to pay in enterprise resource planning software. Despite its potential for use in industrial manufacturing, such contributions are scarce in the current state of the art and, as far as we are aware of, do not fully justify its application.