自主算法共谋:序列定价下的Q学习

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-08-09 DOI:10.1111/1756-2171.12383
Timo Klein
{"title":"自主算法共谋:序列定价下的Q学习","authors":"Timo Klein","doi":"10.1111/1756-2171.12383","DOIUrl":null,"url":null,"abstract":"Prices are increasingly set by algorithms. One concern is that intelligent algorithms may learn to collude on higher prices even in absence of the kind of communication or agreement necessary to establish an antitrust infringement. However, exactly how this may happen is an open question. I show in a simulated environment of sequential competition that competing reinforcement learning algorithms can indeed learn to converge to collusive equilibria. When the set of discrete prices increases, the algorithm considered increasingly converges to supra-competitive asymmetric cycles. I show that results are robust to various extensions and discuss practical limitations and policy implications.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1756-2171.12383","citationCount":"26","resultStr":"{\"title\":\"Autonomous algorithmic collusion: Q‐learning under sequential pricing\",\"authors\":\"Timo Klein\",\"doi\":\"10.1111/1756-2171.12383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prices are increasingly set by algorithms. One concern is that intelligent algorithms may learn to collude on higher prices even in absence of the kind of communication or agreement necessary to establish an antitrust infringement. However, exactly how this may happen is an open question. I show in a simulated environment of sequential competition that competing reinforcement learning algorithms can indeed learn to converge to collusive equilibria. When the set of discrete prices increases, the algorithm considered increasingly converges to supra-competitive asymmetric cycles. I show that results are robust to various extensions and discuss practical limitations and policy implications.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/1756-2171.12383\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1111/1756-2171.12383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1111/1756-2171.12383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 26

摘要

价格越来越多地由算法决定。一个令人担忧的问题是,即使没有建立反垄断侵权所需的沟通或协议,智能算法也可能学会在更高的价格上串通。然而,这究竟是如何发生的,这是一个悬而未决的问题。我在序列竞争的模拟环境中表明,竞争强化学习算法确实可以学习收敛到共谋均衡。当离散价格集增加时,所考虑的算法越来越收敛于超竞争不对称循环。我表明,结果对各种扩展都是稳健的,并讨论了实际限制和政策含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous algorithmic collusion: Q‐learning under sequential pricing
Prices are increasingly set by algorithms. One concern is that intelligent algorithms may learn to collude on higher prices even in absence of the kind of communication or agreement necessary to establish an antitrust infringement. However, exactly how this may happen is an open question. I show in a simulated environment of sequential competition that competing reinforcement learning algorithms can indeed learn to converge to collusive equilibria. When the set of discrete prices increases, the algorithm considered increasingly converges to supra-competitive asymmetric cycles. I show that results are robust to various extensions and discuss practical limitations and policy implications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1