An Cong Tran, Thanh Trinh Thi Kim, Hai Thanh Nguyen
{"title":"基于深度学习和几何变换的时钟式称重图像大米称重估计方法","authors":"An Cong Tran, Thanh Trinh Thi Kim, Hai Thanh Nguyen","doi":"10.46604/aiti.2023.10926","DOIUrl":null,"url":null,"abstract":"AI impacts surrounding human life, such as the economy, health, education, and agricultural production; however, the crop prices in the harvest season are still on manual calculation, which causes doubts about accuracy. In this study, an image-based approach is proposed to help farmers calculate rice prices more accurately. YOLOv5 is used to detect and extract the scales in the images taken from the harvesting of rice crops. Then, various image processing techniques, such as brightness balance, background removal, etc., are compiled to determine the needle position and number on the extracted scale. Lastly, geometric transformations are proposed to calculate the weight. A real dataset of 709 images is used for the experiment. The proposed method achieves good results in terms of mAP@0.5 at 0.995, mAP@[0.5:0.95] at 0.830 for scale detection, and MAE at 3.7 for weight calculation.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Image-Based Rice Weighing Estimation Approach on Clock Type Weighing Scale Using Deep Learning and Geometric Transformations\",\"authors\":\"An Cong Tran, Thanh Trinh Thi Kim, Hai Thanh Nguyen\",\"doi\":\"10.46604/aiti.2023.10926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AI impacts surrounding human life, such as the economy, health, education, and agricultural production; however, the crop prices in the harvest season are still on manual calculation, which causes doubts about accuracy. In this study, an image-based approach is proposed to help farmers calculate rice prices more accurately. YOLOv5 is used to detect and extract the scales in the images taken from the harvesting of rice crops. Then, various image processing techniques, such as brightness balance, background removal, etc., are compiled to determine the needle position and number on the extracted scale. Lastly, geometric transformations are proposed to calculate the weight. A real dataset of 709 images is used for the experiment. The proposed method achieves good results in terms of mAP@0.5 at 0.995, mAP@[0.5:0.95] at 0.830 for scale detection, and MAE at 3.7 for weight calculation.\",\"PeriodicalId\":52314,\"journal\":{\"name\":\"Advances in Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/aiti.2023.10926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2023.10926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
An Image-Based Rice Weighing Estimation Approach on Clock Type Weighing Scale Using Deep Learning and Geometric Transformations
AI impacts surrounding human life, such as the economy, health, education, and agricultural production; however, the crop prices in the harvest season are still on manual calculation, which causes doubts about accuracy. In this study, an image-based approach is proposed to help farmers calculate rice prices more accurately. YOLOv5 is used to detect and extract the scales in the images taken from the harvesting of rice crops. Then, various image processing techniques, such as brightness balance, background removal, etc., are compiled to determine the needle position and number on the extracted scale. Lastly, geometric transformations are proposed to calculate the weight. A real dataset of 709 images is used for the experiment. The proposed method achieves good results in terms of mAP@0.5 at 0.995, mAP@[0.5:0.95] at 0.830 for scale detection, and MAE at 3.7 for weight calculation.