Yan-Min Luo, C. Leong, Shuhai Jiao, F. Chung, Wenjie Li, Guoping Liu
{"title":"geotile2vec:城市分析的多模态和多阶段嵌入框架","authors":"Yan-Min Luo, C. Leong, Shuhai Jiao, F. Chung, Wenjie Li, Guoping Liu","doi":"10.1145/3571741","DOIUrl":null,"url":null,"abstract":"Cities are very complex systems. Representing urban regions are essential for exploring, understanding, and predicting properties and features of cities. The enrichment of multi-modal urban big data has provided opportunities for researchers to enhance urban region embedding. However, existing works failed to develop an integrated pipeline that fully utilizes effective and informative data sources within geographic units. In this article, we regard a geo-tile as a geographic unit and propose a multi-modal and multi-stage representation learning framework, namely Geo-Tile2Vec, for urban analytics, especially for urban region properties identification. Specifically, in the early stage, geo-tile embeddings are firstly inferred through dynamic mobility events which are combinations of point-of-interest (POI) data and trajectory data by a Word2Vec-like model and metric learning. Then, in the latter stage, we use static street-level imagery to further enrich the embedding information by metric learning. Lastly, the framework learns distributed geo-tile embeddings for the given multi-modal data. We conduct experiments on real-world urban datasets. Four downstream tasks, i.e., main POI category classification task, main land use category classification task, restaurant average price regression task, and firm number regression task, are adopted for validating the effectiveness of the proposed framework in representing geo-tiles. Our proposed framework can significantly improve the performances of all downstream tasks. In addition, we also demonstrate that geo-tiles with similar urban region properties are geometrically closer in the vector space.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geo-Tile2Vec: A Multi-Modal and Multi-Stage Embedding Framework for Urban Analytics\",\"authors\":\"Yan-Min Luo, C. Leong, Shuhai Jiao, F. Chung, Wenjie Li, Guoping Liu\",\"doi\":\"10.1145/3571741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cities are very complex systems. Representing urban regions are essential for exploring, understanding, and predicting properties and features of cities. The enrichment of multi-modal urban big data has provided opportunities for researchers to enhance urban region embedding. However, existing works failed to develop an integrated pipeline that fully utilizes effective and informative data sources within geographic units. In this article, we regard a geo-tile as a geographic unit and propose a multi-modal and multi-stage representation learning framework, namely Geo-Tile2Vec, for urban analytics, especially for urban region properties identification. Specifically, in the early stage, geo-tile embeddings are firstly inferred through dynamic mobility events which are combinations of point-of-interest (POI) data and trajectory data by a Word2Vec-like model and metric learning. Then, in the latter stage, we use static street-level imagery to further enrich the embedding information by metric learning. Lastly, the framework learns distributed geo-tile embeddings for the given multi-modal data. We conduct experiments on real-world urban datasets. Four downstream tasks, i.e., main POI category classification task, main land use category classification task, restaurant average price regression task, and firm number regression task, are adopted for validating the effectiveness of the proposed framework in representing geo-tiles. Our proposed framework can significantly improve the performances of all downstream tasks. In addition, we also demonstrate that geo-tiles with similar urban region properties are geometrically closer in the vector space.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3571741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Geo-Tile2Vec: A Multi-Modal and Multi-Stage Embedding Framework for Urban Analytics
Cities are very complex systems. Representing urban regions are essential for exploring, understanding, and predicting properties and features of cities. The enrichment of multi-modal urban big data has provided opportunities for researchers to enhance urban region embedding. However, existing works failed to develop an integrated pipeline that fully utilizes effective and informative data sources within geographic units. In this article, we regard a geo-tile as a geographic unit and propose a multi-modal and multi-stage representation learning framework, namely Geo-Tile2Vec, for urban analytics, especially for urban region properties identification. Specifically, in the early stage, geo-tile embeddings are firstly inferred through dynamic mobility events which are combinations of point-of-interest (POI) data and trajectory data by a Word2Vec-like model and metric learning. Then, in the latter stage, we use static street-level imagery to further enrich the embedding information by metric learning. Lastly, the framework learns distributed geo-tile embeddings for the given multi-modal data. We conduct experiments on real-world urban datasets. Four downstream tasks, i.e., main POI category classification task, main land use category classification task, restaurant average price regression task, and firm number regression task, are adopted for validating the effectiveness of the proposed framework in representing geo-tiles. Our proposed framework can significantly improve the performances of all downstream tasks. In addition, we also demonstrate that geo-tiles with similar urban region properties are geometrically closer in the vector space.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.