螺旋桨空化与诱导振动

IF 0.7 4区 工程技术 Q4 ENGINEERING, MARINE International Journal of Maritime Engineering Pub Date : 2021-12-13 DOI:10.5750/ijme.v153ia4.870
C. Leontopoulos, S. K. Lee, L. Karaminas
{"title":"螺旋桨空化与诱导振动","authors":"C. Leontopoulos, S. K. Lee, L. Karaminas","doi":"10.5750/ijme.v153ia4.870","DOIUrl":null,"url":null,"abstract":"The demand to increase the efficiency of propellers has led to optimized propeller blade designs finding their way into the construction of high-powered commercial vessels, such as containers or LNG carriers and certain categories of passenger vessels, to mention but a few. It has become increasingly common to see the propeller tip rotate closer to the hull surface, sweeping the thick turbulent boundary layer attached to the hull, causing fluid structure interaction. At the same time, increasing the loading on marine propellers can lead to problems, such as noise, hull vibration, and cavitation. The degree above which, such phenomena as propeller cavitation can be the main perpetrators for intensive vibration during operation, their diagnosis and the solutions to mitigate this risk, such as the use of vortex generators, are discussed here, taking into account cost and longevity of the vessel as well as the involvement of classification rules.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PROPELLER CAVITATION AND INDUCED VIBRATION\",\"authors\":\"C. Leontopoulos, S. K. Lee, L. Karaminas\",\"doi\":\"10.5750/ijme.v153ia4.870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand to increase the efficiency of propellers has led to optimized propeller blade designs finding their way into the construction of high-powered commercial vessels, such as containers or LNG carriers and certain categories of passenger vessels, to mention but a few. It has become increasingly common to see the propeller tip rotate closer to the hull surface, sweeping the thick turbulent boundary layer attached to the hull, causing fluid structure interaction. At the same time, increasing the loading on marine propellers can lead to problems, such as noise, hull vibration, and cavitation. The degree above which, such phenomena as propeller cavitation can be the main perpetrators for intensive vibration during operation, their diagnosis and the solutions to mitigate this risk, such as the use of vortex generators, are discussed here, taking into account cost and longevity of the vessel as well as the involvement of classification rules.\",\"PeriodicalId\":50313,\"journal\":{\"name\":\"International Journal of Maritime Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Maritime Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5750/ijme.v153ia4.870\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5750/ijme.v153ia4.870","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

提高螺旋桨效率的需求导致优化的螺旋桨叶片设计进入了高功率商业船舶的建造中,如集装箱或液化天然气运输船和某些类别的客轮,仅举几例。越来越常见的情况是,螺旋桨尖端向船体表面旋转,扫过附着在船体上的厚湍流边界层,导致流体与结构的相互作用。同时,增加船用螺旋桨的载荷会导致噪音、船体振动和空化等问题。考虑到船舶的成本和寿命以及分类规则的参与,本文讨论了螺旋桨空化等现象可能是操作过程中强烈振动的主要原因的程度、诊断以及减轻这种风险的解决方案,如使用涡流发生器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PROPELLER CAVITATION AND INDUCED VIBRATION
The demand to increase the efficiency of propellers has led to optimized propeller blade designs finding their way into the construction of high-powered commercial vessels, such as containers or LNG carriers and certain categories of passenger vessels, to mention but a few. It has become increasingly common to see the propeller tip rotate closer to the hull surface, sweeping the thick turbulent boundary layer attached to the hull, causing fluid structure interaction. At the same time, increasing the loading on marine propellers can lead to problems, such as noise, hull vibration, and cavitation. The degree above which, such phenomena as propeller cavitation can be the main perpetrators for intensive vibration during operation, their diagnosis and the solutions to mitigate this risk, such as the use of vortex generators, are discussed here, taking into account cost and longevity of the vessel as well as the involvement of classification rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The International Journal of Maritime Engineering (IJME) provides a forum for the reporting and discussion on technical and scientific issues associated with the design and construction of commercial marine vessels . Contributions in the form of papers and notes, together with discussion on published papers are welcomed.
期刊最新文献
SEAFARER SELECTION FOR SUSTAINABLE SHIPPING: CASE STUDY FOR TURKEY VOYAGE SPEED OPTIMIZATION USING GENETIC ALGORITHM METHODOLOGY APPLIED TO STUDY WATER MIST AS AN INFRARED SIGNATURE SUPPRESSOR IN MARINE GAS TURBINES EXPERIMENTAL STUDY OF A VARIABLE BUOYANCY SYSTEM FOR LOW DEPTH OPERATION AN APPLICATION OF AGENT-BASED TRAFFIC FLOW MODEL FOR MARITIME SAFETY MANAGEMENT EVALUATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1