线性和非线性数字滤波器:从模拟和超越

IF 0.4 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Music Journal Pub Date : 2021-06-01 DOI:10.1162/comj_a_00599
Victor Lazzarini;Joseph Timoney
{"title":"线性和非线性数字滤波器:从模拟和超越","authors":"Victor Lazzarini;Joseph Timoney","doi":"10.1162/comj_a_00599","DOIUrl":null,"url":null,"abstract":"Abstract A common approach in the development of digital filters is to begin with an existing analog filter and produce an equivalent computer program to realize it. This may involve, at the extreme, the detailed analysis of circuit behavior, or it may stem from a higher-level approach that looks at block diagrams and s-domain transfer functions. In this article, we first take the latter approach to develop a set of linear filters from the well-known state variable filter. From this we obtain a first result, which is a linear digital implementation of the Steiner design, comprising separate inputs for different frequency responses and a single output summing the responses. Turning back to the state variable design, we show that to develop a nonlinear version, an analog circuit realization can be used to identify positions in which to insert nonlinear waveshapers. This gives us our second result, a nonlinear digital state variable filter. From this analog-derived design, we then propose modifications that go beyond the original filter, developing as a final result a structure that could be classed as a hybrid of filter and digital waveshaper. As part of this process, we ask the question of whether an approach that takes inspiration from the analog world, while being decoupled from it, may be more profitable in the long run than an obsession with detailed circuit modeling.","PeriodicalId":50639,"journal":{"name":"Computer Music Journal","volume":"45 2","pages":"67-83"},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linear and Nonlinear Digital Filters: From the Analog and Beyond\",\"authors\":\"Victor Lazzarini;Joseph Timoney\",\"doi\":\"10.1162/comj_a_00599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A common approach in the development of digital filters is to begin with an existing analog filter and produce an equivalent computer program to realize it. This may involve, at the extreme, the detailed analysis of circuit behavior, or it may stem from a higher-level approach that looks at block diagrams and s-domain transfer functions. In this article, we first take the latter approach to develop a set of linear filters from the well-known state variable filter. From this we obtain a first result, which is a linear digital implementation of the Steiner design, comprising separate inputs for different frequency responses and a single output summing the responses. Turning back to the state variable design, we show that to develop a nonlinear version, an analog circuit realization can be used to identify positions in which to insert nonlinear waveshapers. This gives us our second result, a nonlinear digital state variable filter. From this analog-derived design, we then propose modifications that go beyond the original filter, developing as a final result a structure that could be classed as a hybrid of filter and digital waveshaper. As part of this process, we ask the question of whether an approach that takes inspiration from the analog world, while being decoupled from it, may be more profitable in the long run than an obsession with detailed circuit modeling.\",\"PeriodicalId\":50639,\"journal\":{\"name\":\"Computer Music Journal\",\"volume\":\"45 2\",\"pages\":\"67-83\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Music Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9931092/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Music Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9931092/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

摘要数字滤波器开发中的一种常见方法是从现有的模拟滤波器开始,并生成一个等效的计算机程序来实现它。这可能涉及对电路行为的详细分析,也可能源于一种更高级的方法,即查看框图和s域传递函数。在本文中,我们首先采用后一种方法,从众所周知的状态变量滤波器中开发一组线性滤波器。由此,我们获得了第一个结果,它是Steiner设计的线性数字实现,包括不同频率响应的单独输入和对响应求和的单个输出。回到状态变量设计,我们表明,要开发非线性版本,可以使用模拟电路实现来识别插入非线性波形器的位置。这给出了我们的第二个结果,一个非线性数字状态变量滤波器。从这个模拟衍生的设计中,我们提出了超越原始滤波器的修改,最终形成了一种可以归类为滤波器和数字波形整形器的混合结构。作为这个过程的一部分,我们要问的问题是,从长远来看,一种从模拟世界中获得灵感的方法,在与模拟世界脱钩的同时,是否比痴迷于详细的电路建模更有利可图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear and Nonlinear Digital Filters: From the Analog and Beyond
Abstract A common approach in the development of digital filters is to begin with an existing analog filter and produce an equivalent computer program to realize it. This may involve, at the extreme, the detailed analysis of circuit behavior, or it may stem from a higher-level approach that looks at block diagrams and s-domain transfer functions. In this article, we first take the latter approach to develop a set of linear filters from the well-known state variable filter. From this we obtain a first result, which is a linear digital implementation of the Steiner design, comprising separate inputs for different frequency responses and a single output summing the responses. Turning back to the state variable design, we show that to develop a nonlinear version, an analog circuit realization can be used to identify positions in which to insert nonlinear waveshapers. This gives us our second result, a nonlinear digital state variable filter. From this analog-derived design, we then propose modifications that go beyond the original filter, developing as a final result a structure that could be classed as a hybrid of filter and digital waveshaper. As part of this process, we ask the question of whether an approach that takes inspiration from the analog world, while being decoupled from it, may be more profitable in the long run than an obsession with detailed circuit modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Music Journal
Computer Music Journal 工程技术-计算机:跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: Computer Music Journal is published quarterly with an annual sound and video anthology containing curated music¹. For four decades, it has been the leading publication about computer music, concentrating fully on digital sound technology and all musical applications of computers. This makes it an essential resource for musicians, composers, scientists, engineers, computer enthusiasts, and anyone exploring the wonders of computer-generated sound. Edited by experts in the field and featuring an international advisory board of eminent computer musicians, issues typically include: In-depth articles on cutting-edge research and developments in technology, methods, and aesthetics of computer music Reports on products of interest, such as new audio and MIDI software and hardware Interviews with leading composers of computer music Announcements of and reports on conferences and courses in the United States and abroad Publication, event, and recording reviews Tutorials, letters, and editorials Numerous graphics, photographs, scores, algorithms, and other illustrations.
期刊最新文献
Finite State Machines with Data Paths in Visual Languages for Music Generating Sonic Phantoms with Quadratic Difference Tone Spectrum Synthesis Embodying Spatial Sound Synthesis with AI in Two Compositions for Instruments and 3-D Electronics Cocreative Interaction: Somax2 and the REACH Project Live Coding Machine Learning: Finding the Moments of Intervention in Autonomous Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1