小型航天器机载系统重构控制技术和程序的综合方法和算法

IF 1.9 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Intelligenza Artificiale Pub Date : 2021-03-30 DOI:10.15622/IA.2021.20.2.1
V. Kalinin, Aleksandr Kulakov, A. A. Pavlov, S. Potryasaev, B. Sokolov
{"title":"小型航天器机载系统重构控制技术和程序的综合方法和算法","authors":"V. Kalinin, Aleksandr Kulakov, A. A. Pavlov, S. Potryasaev, B. Sokolov","doi":"10.15622/IA.2021.20.2.1","DOIUrl":null,"url":null,"abstract":". In modern conditions, in the field of the creation and use of existing and advanced space vehicles (SV), the issues of autonomy and survivability acquire particular relevance in the development and operation of small-mass spacecraft (SMS) for Earth remote sensing (ERS). \nThe specificity of the small spacecraft lies in the fact that it is difficult to directly apply to the process of their creation the standard practice of using the system for ensuring the reliability of the rocket and space industry due to the lack of the ability to provide full structural redundancy of its onboard systems (OBS) associated with mass-dimensional and other restrictions. In this case, the tasks of developing model-algorithmic methods and approaches to ensuring the required level of indicators of structural reliability, survivability and, in general, the effectiveness of the functioning of the MCA OBS become of particular relevance. \nThe problem of increasing the level of indicators of autonomy, survivability, efficiency of functioning of complex technical objects (CTO), which, in particular, SMS belong, is considered in the scientific literature in conjunction with solving problems of control, assessment and technical diagnostics of the state of the CTO reconfiguration (structural, functional, structural-functional reconfiguration) of CTO structures, management of its reserves, alternative and multi-mode control, analysis of fault tolerance and disaster recovery of CTO. However, all of these studies are fragmented, both at the methodological and methodological and technological levels. \nThe article provides a generalized description of the combined methods and algorithms developed by the authors for solving the problems of synthesis of technologies and programs for controlling the OS reconfiguration to increase the survivability of the SMS. At the same time, these tasks are solved not in isolation, but in a comprehensive manner within the framework of the general problem of proactive management of the structural dynamics of SMS with or without the use of GCC tools, which ensures the efficiency, validity, completeness, isolation and consistency of synthesized management decisions. The novelty of the approach proposed in the article is that its authors, based on the concepts of integrated (system) modeling, proactive control of the structural dynamics of the OS SMS, as well as the intellectualization of the processes of proactive control of the OS SMS, developed methods and algorithms for the synthesis of technologies and programs. Control of the reconfiguration of the MCS BS, providing, firstly, the situational choice of the optimal sequence of operations and the allocation of SMS resources with and without the use of GCC facilities, and, secondly, effective parrying not only of the calculated ones, but also off-design emergency flight situations (EFS), as well as the operational restoration of the operability of its OS. The constructiveness of the proposed approach is illustrated by the example of solving the problem of flexible redistribution of information processing tasks between the OS SMS and the SMS GCC.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":"20 1","pages":"236-269"},"PeriodicalIF":1.9000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methods and algorithms for the synthesis of technologies and programs for control-ling the reconfiguration of on-board systems of small-sized spacecrafts\",\"authors\":\"V. Kalinin, Aleksandr Kulakov, A. A. Pavlov, S. Potryasaev, B. Sokolov\",\"doi\":\"10.15622/IA.2021.20.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In modern conditions, in the field of the creation and use of existing and advanced space vehicles (SV), the issues of autonomy and survivability acquire particular relevance in the development and operation of small-mass spacecraft (SMS) for Earth remote sensing (ERS). \\nThe specificity of the small spacecraft lies in the fact that it is difficult to directly apply to the process of their creation the standard practice of using the system for ensuring the reliability of the rocket and space industry due to the lack of the ability to provide full structural redundancy of its onboard systems (OBS) associated with mass-dimensional and other restrictions. In this case, the tasks of developing model-algorithmic methods and approaches to ensuring the required level of indicators of structural reliability, survivability and, in general, the effectiveness of the functioning of the MCA OBS become of particular relevance. \\nThe problem of increasing the level of indicators of autonomy, survivability, efficiency of functioning of complex technical objects (CTO), which, in particular, SMS belong, is considered in the scientific literature in conjunction with solving problems of control, assessment and technical diagnostics of the state of the CTO reconfiguration (structural, functional, structural-functional reconfiguration) of CTO structures, management of its reserves, alternative and multi-mode control, analysis of fault tolerance and disaster recovery of CTO. However, all of these studies are fragmented, both at the methodological and methodological and technological levels. \\nThe article provides a generalized description of the combined methods and algorithms developed by the authors for solving the problems of synthesis of technologies and programs for controlling the OS reconfiguration to increase the survivability of the SMS. At the same time, these tasks are solved not in isolation, but in a comprehensive manner within the framework of the general problem of proactive management of the structural dynamics of SMS with or without the use of GCC tools, which ensures the efficiency, validity, completeness, isolation and consistency of synthesized management decisions. The novelty of the approach proposed in the article is that its authors, based on the concepts of integrated (system) modeling, proactive control of the structural dynamics of the OS SMS, as well as the intellectualization of the processes of proactive control of the OS SMS, developed methods and algorithms for the synthesis of technologies and programs. Control of the reconfiguration of the MCS BS, providing, firstly, the situational choice of the optimal sequence of operations and the allocation of SMS resources with and without the use of GCC facilities, and, secondly, effective parrying not only of the calculated ones, but also off-design emergency flight situations (EFS), as well as the operational restoration of the operability of its OS. The constructiveness of the proposed approach is illustrated by the example of solving the problem of flexible redistribution of information processing tasks between the OS SMS and the SMS GCC.\",\"PeriodicalId\":42055,\"journal\":{\"name\":\"Intelligenza Artificiale\",\"volume\":\"20 1\",\"pages\":\"236-269\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligenza Artificiale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15622/IA.2021.20.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15622/IA.2021.20.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

在现代条件下,在现有和先进空间飞行器的制造和使用领域,自主性和生存能力问题与用于地球遥感的小质量航天器的开发和运行具有特别的相关性。小型航天器的特殊性在于,由于缺乏提供与其质量尺寸和其他限制相关的机载系统(OBS)的完全结构冗余的能力,很难将使用该系统确保火箭和航天工业可靠性的标准做法直接应用于其创建过程。在这种情况下,开发模型算法方法和方法的任务,以确保所需的结构可靠性、生存性指标水平,以及MCA OBS功能的有效性,变得特别重要。提高复杂技术对象(CTO)的自主性、生存性和功能效率的指标水平的问题,特别是SMS,在科学文献中被认为与解决控制问题相结合,CTO结构的CTO重新配置(结构、功能、结构-功能重新配置)状态的评估和技术诊断,其储备的管理,替代和多模式控制,CTO的容错和灾难恢复分析。然而,所有这些研究在方法论、方法论和技术层面都是零散的。本文对作者为解决控制操作系统重新配置以提高SMS生存性的技术和程序的综合问题而开发的组合方法和算法进行了概括描述。同时,这些任务不是孤立地解决的,但在使用或不使用GCC工具的情况下,以全面的方式在SMS结构动态的主动管理的一般问题的框架内,这确保了综合管理决策的效率、有效性、完整性、孤立性和一致性。本文提出的方法的新颖性在于,作者基于集成(系统)建模、OS SMS结构动力学的主动控制以及OS SMS主动控制过程的智能化的概念,开发了技术和程序综合的方法和算法。控制MCS BS的重新配置,首先,在使用和不使用GCC设施的情况下,提供最佳操作序列的情景选择和SMS资源的分配,其次,不仅有效地避开计算出的情况,而且有效地避开设计外的紧急飞行情况(EFS),以及操作系统可操作性的操作恢复。通过解决操作系统SMS和SMS GCC之间信息处理任务的灵活再分配问题,说明了该方法的构造性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods and algorithms for the synthesis of technologies and programs for control-ling the reconfiguration of on-board systems of small-sized spacecrafts
. In modern conditions, in the field of the creation and use of existing and advanced space vehicles (SV), the issues of autonomy and survivability acquire particular relevance in the development and operation of small-mass spacecraft (SMS) for Earth remote sensing (ERS). The specificity of the small spacecraft lies in the fact that it is difficult to directly apply to the process of their creation the standard practice of using the system for ensuring the reliability of the rocket and space industry due to the lack of the ability to provide full structural redundancy of its onboard systems (OBS) associated with mass-dimensional and other restrictions. In this case, the tasks of developing model-algorithmic methods and approaches to ensuring the required level of indicators of structural reliability, survivability and, in general, the effectiveness of the functioning of the MCA OBS become of particular relevance. The problem of increasing the level of indicators of autonomy, survivability, efficiency of functioning of complex technical objects (CTO), which, in particular, SMS belong, is considered in the scientific literature in conjunction with solving problems of control, assessment and technical diagnostics of the state of the CTO reconfiguration (structural, functional, structural-functional reconfiguration) of CTO structures, management of its reserves, alternative and multi-mode control, analysis of fault tolerance and disaster recovery of CTO. However, all of these studies are fragmented, both at the methodological and methodological and technological levels. The article provides a generalized description of the combined methods and algorithms developed by the authors for solving the problems of synthesis of technologies and programs for controlling the OS reconfiguration to increase the survivability of the SMS. At the same time, these tasks are solved not in isolation, but in a comprehensive manner within the framework of the general problem of proactive management of the structural dynamics of SMS with or without the use of GCC tools, which ensures the efficiency, validity, completeness, isolation and consistency of synthesized management decisions. The novelty of the approach proposed in the article is that its authors, based on the concepts of integrated (system) modeling, proactive control of the structural dynamics of the OS SMS, as well as the intellectualization of the processes of proactive control of the OS SMS, developed methods and algorithms for the synthesis of technologies and programs. Control of the reconfiguration of the MCS BS, providing, firstly, the situational choice of the optimal sequence of operations and the allocation of SMS resources with and without the use of GCC facilities, and, secondly, effective parrying not only of the calculated ones, but also off-design emergency flight situations (EFS), as well as the operational restoration of the operability of its OS. The constructiveness of the proposed approach is illustrated by the example of solving the problem of flexible redistribution of information processing tasks between the OS SMS and the SMS GCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligenza Artificiale
Intelligenza Artificiale COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
3.50
自引率
6.70%
发文量
13
期刊最新文献
Special Issue NL4AI 2022: Workshop on natural language for artificial intelligence User-centric item characteristics for personalized multimedia systems: A systematic review Combining human intelligence and machine learning for fact-checking: Towards a hybrid human-in-the-loop framework A framework for safe decision making: A convex duality approach Grounding End-to-End Pre-trained architectures for Semantic Role Labeling in multiple languages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1