M. Nakisa, A. Maimun, Y. Ahmed, F. Behrouzi, A. Tarmizi
{"title":"浅水对多用途水陆两栖车辆阻力影响的数值估计","authors":"M. Nakisa, A. Maimun, Y. Ahmed, F. Behrouzi, A. Tarmizi","doi":"10.3329/JNAME.V14I1.26523","DOIUrl":null,"url":null,"abstract":"This research paper investigated the hydrodynamic resistance of Multipurpose Amphibious Vehicles (MAV) due to navigate in low water depth numerically. This type of vehicle and other coastal floating vehicles encounter the problem of a small under keel clearance with river bed. The proper estimation of ship resistance and squat is influence largely on the power calculation in the design stage. The present work describes the effect of shallow water on the Multipurpose Amphibious Vehicles (MAV) resistance at different speed using Computational Fluid Dynamics (CFD) techniques. A comparison in the drag on the hull is illustrated between depth restriction and infinite depth water. This paper provides a wide introduction into the problems of modelling of the restricted water depth effects on the ship behaviour, specifically hydrodynamic resistance and squat using CFD which is applied by ANSYS-CFX14.0.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"14 1","pages":"1-8"},"PeriodicalIF":1.2000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V14I1.26523","citationCount":"11","resultStr":"{\"title\":\"Numerical estimation of shallow water effect on multipurpose amphibious vehicle resistance\",\"authors\":\"M. Nakisa, A. Maimun, Y. Ahmed, F. Behrouzi, A. Tarmizi\",\"doi\":\"10.3329/JNAME.V14I1.26523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper investigated the hydrodynamic resistance of Multipurpose Amphibious Vehicles (MAV) due to navigate in low water depth numerically. This type of vehicle and other coastal floating vehicles encounter the problem of a small under keel clearance with river bed. The proper estimation of ship resistance and squat is influence largely on the power calculation in the design stage. The present work describes the effect of shallow water on the Multipurpose Amphibious Vehicles (MAV) resistance at different speed using Computational Fluid Dynamics (CFD) techniques. A comparison in the drag on the hull is illustrated between depth restriction and infinite depth water. This paper provides a wide introduction into the problems of modelling of the restricted water depth effects on the ship behaviour, specifically hydrodynamic resistance and squat using CFD which is applied by ANSYS-CFX14.0.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\"14 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3329/JNAME.V14I1.26523\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V14I1.26523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V14I1.26523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Numerical estimation of shallow water effect on multipurpose amphibious vehicle resistance
This research paper investigated the hydrodynamic resistance of Multipurpose Amphibious Vehicles (MAV) due to navigate in low water depth numerically. This type of vehicle and other coastal floating vehicles encounter the problem of a small under keel clearance with river bed. The proper estimation of ship resistance and squat is influence largely on the power calculation in the design stage. The present work describes the effect of shallow water on the Multipurpose Amphibious Vehicles (MAV) resistance at different speed using Computational Fluid Dynamics (CFD) techniques. A comparison in the drag on the hull is illustrated between depth restriction and infinite depth water. This paper provides a wide introduction into the problems of modelling of the restricted water depth effects on the ship behaviour, specifically hydrodynamic resistance and squat using CFD which is applied by ANSYS-CFX14.0.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.