Cenqi Yan, Stephen Barlow, Zhaohui Wang, He Yan, Alex K.-Y. Jen, Seth R. Marder, Xiaowei Zhan
{"title":"有机太阳能电池用非富勒烯受体","authors":"Cenqi Yan, Stephen Barlow, Zhaohui Wang, He Yan, Alex K.-Y. Jen, Seth R. Marder, Xiaowei Zhan","doi":"10.1038/natrevmats.2018.3","DOIUrl":null,"url":null,"abstract":"Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure–property relationships, donor–acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field. Non-fullerene acceptors have been widely used in organic solar cells over the past 3 years. This Review focuses on the two most promising classes of non-fullerene acceptors — rylene diimide-based materials and fused-ring electron acceptors — and discusses structure–property relationships, donor– acceptor matching criteria and device physics, as well as future research directions for the field.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":null,"pages":null},"PeriodicalIF":79.8000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/natrevmats.2018.3","citationCount":"1732","resultStr":"{\"title\":\"Non-fullerene acceptors for organic solar cells\",\"authors\":\"Cenqi Yan, Stephen Barlow, Zhaohui Wang, He Yan, Alex K.-Y. Jen, Seth R. Marder, Xiaowei Zhan\",\"doi\":\"10.1038/natrevmats.2018.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure–property relationships, donor–acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field. Non-fullerene acceptors have been widely used in organic solar cells over the past 3 years. This Review focuses on the two most promising classes of non-fullerene acceptors — rylene diimide-based materials and fused-ring electron acceptors — and discusses structure–property relationships, donor– acceptor matching criteria and device physics, as well as future research directions for the field.\",\"PeriodicalId\":19081,\"journal\":{\"name\":\"Nature Reviews Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":79.8000,\"publicationDate\":\"2018-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/natrevmats.2018.3\",\"citationCount\":\"1732\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/natrevmats20183\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/natrevmats20183","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure–property relationships, donor–acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field. Non-fullerene acceptors have been widely used in organic solar cells over the past 3 years. This Review focuses on the two most promising classes of non-fullerene acceptors — rylene diimide-based materials and fused-ring electron acceptors — and discusses structure–property relationships, donor– acceptor matching criteria and device physics, as well as future research directions for the field.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.