Ying Xu, Xiaoning Zhang, Q. Han, W. Huang, Yiming Liu
{"title":"带装配式节点的单层网架穹顶的连续倒塌分析","authors":"Ying Xu, Xiaoning Zhang, Q. Han, W. Huang, Yiming Liu","doi":"10.20898/j.iass.2023.014","DOIUrl":null,"url":null,"abstract":"Progressive collapse accidents of single-layer latticed domes seriously threaten public safety. The progressive collapse-resisting capacity (PCRC) is gradually becoming an essential requirement in the design of spatial structures. Currently, the joint system used in spatial structures\n can be divided into two categories: welded joints and fabricated joints. The semi-rigidity of fabricated joints may have a significant influence on the PCRC of single- layer latticed domes. In this study, the PCRCs of single-layer fabricated latticed domes with identical span and rise-to-span\n ratio are evaluated based on the critical progressive collapse load (CPCL). The collapse mechanism of single-layer latticed domes with different grid forms is revealed by progressive analysis. In addition, the effects of joint rigidity, grid form and type of initial failure are further evaluated.\n The results indicate that the collapse mechanism of single-layer latticed domes includes the radial propagation type and the circumferential propagation type. The latticed domes with quadrilateral grids have much lower PCRC than those with triangular grids. The CPCLs of weld-jointed latticed\n domes are 5% to 22% higher than those of the fabricated latticed domes with the same grid form. The above influence should be fully considered in the progressive collapse-resisting design of latticed domes with fabricated joints.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive Collapse Analysis of Single-Layer Latticed Domes With Fabricated Joints\",\"authors\":\"Ying Xu, Xiaoning Zhang, Q. Han, W. Huang, Yiming Liu\",\"doi\":\"10.20898/j.iass.2023.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Progressive collapse accidents of single-layer latticed domes seriously threaten public safety. The progressive collapse-resisting capacity (PCRC) is gradually becoming an essential requirement in the design of spatial structures. Currently, the joint system used in spatial structures\\n can be divided into two categories: welded joints and fabricated joints. The semi-rigidity of fabricated joints may have a significant influence on the PCRC of single- layer latticed domes. In this study, the PCRCs of single-layer fabricated latticed domes with identical span and rise-to-span\\n ratio are evaluated based on the critical progressive collapse load (CPCL). The collapse mechanism of single-layer latticed domes with different grid forms is revealed by progressive analysis. In addition, the effects of joint rigidity, grid form and type of initial failure are further evaluated.\\n The results indicate that the collapse mechanism of single-layer latticed domes includes the radial propagation type and the circumferential propagation type. The latticed domes with quadrilateral grids have much lower PCRC than those with triangular grids. The CPCLs of weld-jointed latticed\\n domes are 5% to 22% higher than those of the fabricated latticed domes with the same grid form. The above influence should be fully considered in the progressive collapse-resisting design of latticed domes with fabricated joints.\",\"PeriodicalId\":42855,\"journal\":{\"name\":\"Journal of the International Association for Shell and Spatial Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the International Association for Shell and Spatial Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20898/j.iass.2023.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2023.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Progressive Collapse Analysis of Single-Layer Latticed Domes With Fabricated Joints
Progressive collapse accidents of single-layer latticed domes seriously threaten public safety. The progressive collapse-resisting capacity (PCRC) is gradually becoming an essential requirement in the design of spatial structures. Currently, the joint system used in spatial structures
can be divided into two categories: welded joints and fabricated joints. The semi-rigidity of fabricated joints may have a significant influence on the PCRC of single- layer latticed domes. In this study, the PCRCs of single-layer fabricated latticed domes with identical span and rise-to-span
ratio are evaluated based on the critical progressive collapse load (CPCL). The collapse mechanism of single-layer latticed domes with different grid forms is revealed by progressive analysis. In addition, the effects of joint rigidity, grid form and type of initial failure are further evaluated.
The results indicate that the collapse mechanism of single-layer latticed domes includes the radial propagation type and the circumferential propagation type. The latticed domes with quadrilateral grids have much lower PCRC than those with triangular grids. The CPCLs of weld-jointed latticed
domes are 5% to 22% higher than those of the fabricated latticed domes with the same grid form. The above influence should be fully considered in the progressive collapse-resisting design of latticed domes with fabricated joints.
期刊介绍:
The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.