一种简单的预测高氮有机化合物密度的方法作为提供清洁产品和巨大能量释放的材料

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED Central European Journal of Energetic Materials Pub Date : 2020-06-26 DOI:10.22211/cejem/124210
M. Keshavarz, R. Ebadpour, M. Jafari
{"title":"一种简单的预测高氮有机化合物密度的方法作为提供清洁产品和巨大能量释放的材料","authors":"M. Keshavarz, R. Ebadpour, M. Jafari","doi":"10.22211/cejem/124210","DOIUrl":null,"url":null,"abstract":": High nitrogen organic compounds (N>50 wt.%) are important for chemical industries because they can provide clean products with generally low-molecular weight product gases and enormous energy release. The density of these materials at or near room temperature is an important physical property for the assessment of their detonation and combustion performances. A novel method is introduced here for the prediction of the density of various classes of organic compounds, including different derivatives of triazole, tetrazole, triazine, tetrazine, furazan, and some organic nitrogen-containing chains. The core model is based on elemental composition, where its reliability has been improved by considering some molecular fragments including specific functional groups. The high reliability of these simple model has been compared with the output from two complex quantum mechanical approaches. For 91 high nitrogen compounds, the values of the standard deviation ( SD ) of the core and improved correlations were 0.076 and 0.047 g·cm –3 . For a further 32 materials, the values of SD were 0.057 and 0.042 g·cm –3 for the core and improved correlations, respectively. These data are close to core and improved quantum mechanical methods, i.e. 0.056 and 0.042 g·cm –3 , respectively, where the calculated data from complex quantum mechanical approaches were available. organic compounds, molecular structure, clean enormous energy release","PeriodicalId":9679,"journal":{"name":"Central European Journal of Energetic Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Simple Approach for Predicting the Density of High Nitrogen Organic Compounds as Materials for Providing Clean Products and Enormous Energy Release\",\"authors\":\"M. Keshavarz, R. Ebadpour, M. Jafari\",\"doi\":\"10.22211/cejem/124210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": High nitrogen organic compounds (N>50 wt.%) are important for chemical industries because they can provide clean products with generally low-molecular weight product gases and enormous energy release. The density of these materials at or near room temperature is an important physical property for the assessment of their detonation and combustion performances. A novel method is introduced here for the prediction of the density of various classes of organic compounds, including different derivatives of triazole, tetrazole, triazine, tetrazine, furazan, and some organic nitrogen-containing chains. The core model is based on elemental composition, where its reliability has been improved by considering some molecular fragments including specific functional groups. The high reliability of these simple model has been compared with the output from two complex quantum mechanical approaches. For 91 high nitrogen compounds, the values of the standard deviation ( SD ) of the core and improved correlations were 0.076 and 0.047 g·cm –3 . For a further 32 materials, the values of SD were 0.057 and 0.042 g·cm –3 for the core and improved correlations, respectively. These data are close to core and improved quantum mechanical methods, i.e. 0.056 and 0.042 g·cm –3 , respectively, where the calculated data from complex quantum mechanical approaches were available. organic compounds, molecular structure, clean enormous energy release\",\"PeriodicalId\":9679,\"journal\":{\"name\":\"Central European Journal of Energetic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Energetic Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.22211/cejem/124210\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Energetic Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22211/cejem/124210","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

:高氮有机化合物(N>50wt.%)对化学工业很重要,因为它们可以提供具有通常低分子量产物气体和巨大能量释放的清洁产品。这些材料在室温或接近室温时的密度是评估其爆震和燃烧性能的重要物理性质。本文介绍了一种预测各类有机化合物密度的新方法,包括三唑、四唑、三嗪、四嗪、呋咱和一些有机含氮链的不同衍生物。核心模型基于元素组成,通过考虑包括特定官能团的一些分子片段,提高了其可靠性。将这些简单模型的高可靠性与两种复杂量子力学方法的输出进行了比较。对于91种高氮化合物,核心的标准偏差(SD)值和改进的相关性分别为0.076和0.047 g·cm–3。对于另外32种材料,核心的SD值分别为0.057和0.042 g·cm–3,并改善了相关性。这些数据接近核心和改进的量子力学方法,即分别为0.056和0.042 g·cm–3,其中可以获得复杂量子力学方法的计算数据。有机化合物,分子结构,清洁巨大的能量释放
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Simple Approach for Predicting the Density of High Nitrogen Organic Compounds as Materials for Providing Clean Products and Enormous Energy Release
: High nitrogen organic compounds (N>50 wt.%) are important for chemical industries because they can provide clean products with generally low-molecular weight product gases and enormous energy release. The density of these materials at or near room temperature is an important physical property for the assessment of their detonation and combustion performances. A novel method is introduced here for the prediction of the density of various classes of organic compounds, including different derivatives of triazole, tetrazole, triazine, tetrazine, furazan, and some organic nitrogen-containing chains. The core model is based on elemental composition, where its reliability has been improved by considering some molecular fragments including specific functional groups. The high reliability of these simple model has been compared with the output from two complex quantum mechanical approaches. For 91 high nitrogen compounds, the values of the standard deviation ( SD ) of the core and improved correlations were 0.076 and 0.047 g·cm –3 . For a further 32 materials, the values of SD were 0.057 and 0.042 g·cm –3 for the core and improved correlations, respectively. These data are close to core and improved quantum mechanical methods, i.e. 0.056 and 0.042 g·cm –3 , respectively, where the calculated data from complex quantum mechanical approaches were available. organic compounds, molecular structure, clean enormous energy release
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Central European Journal of Energetic Materials
Central European Journal of Energetic Materials CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.80
自引率
25.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: CEJEM – the newest in Europe scientific journal on energetic materials It provides a forum for scientists interested in the exchange of practical and theoretical knowledge concerning energetic materials: propellants, explosives and pyrotechnics. The journal focuses in particular on the latest results of research on various problems of energetic materials. Topics: ignition, combustion and detonation phenomenon; formulation, synthesis and processing; analysis and thermal decomposition; toxicological, environmental and safety aspects of energetic materials production, application, utilization and demilitarization; molecular orbital calculations; detonation properties and ballistics; biotechnology and hazards testing CEJEM presents original research and interesting reviews. Contributions are from experts in chemistry, physics and engineering from leading research centers in Europe, America and Asia. All submissions are independently refereed by Editorial Board members and by external referees chosen on international basis.
期刊最新文献
Prediction of Ignition Delay Times for Amine-based Liquid Propellants through a QSPR Approach Modification of Axial Distribution of Fragment Velocity in Preformed Fragmentation Warheads Initiation Strategy of Aimable Warhead Based on Asynchronous Initiation between Lines Influence of the Prepolymer Structure of Glycidyl Azide Polymer (GAP) on Binder Properties - Some Theoretical Considerations Synthesis of a New Random Copolymer Based on Glycidyl Nitrate and Tetrahydrofuran: A Thermal, Kinetic, and Theoretical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1