{"title":"一种新型Schöenflies-Motion非对称并联机构性能分析与优化设计","authors":"Wei Zhu, Xueyang Zhu, Zhiyuan Ma, Huiping Shen","doi":"10.1115/1.4062149","DOIUrl":null,"url":null,"abstract":"\n Since previous studies of parallel mechanisms (PMs) have tended to favor symmetrical overall configuration to obtain relatively stable kinematic and dynamic performance and to satisfy isotropic requirements. The analysis of kinematic and dynamic performance of asymmetric mechanisms has been an issue of interest. In this paper, an asymmetric SCARA-type PM with 4 degrees-of-freedom (DOF) is proposed. First, the orientation characteristic set is calculated to obtain the DOF of the PM. Then, the inverse kinematics and the velocity and acceleration of each branch chain of the mechanism is analyzed. The dynamic model of the mechanism is established according to the principle of virtual work. The workspace of the mechanism is drawn according to the constraints that have been given to the mechanism's kinematic pairs. The singularity, dexterity, motion/force transfer performance and maximum acceleration performance of the mechanism are also analyzed. On this basis, the kinematic and dynamic performance evaluation indexes of the mechanism are studied. Finally, the workspace and acceleration performance of the mechanism are optimized based on the differential evolution algorithm (DE) to obtain the structural parameters when the mechanism achieves optimal performance. The asymmetric PM proposed in this paper, as well as the algorithm of performance index and optimization method used can provide some reference value for configuration design and optimization analysis.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis and Optimal Design of a Novel Schöenflies-Motion Asymmetric Parallel Mechanism\",\"authors\":\"Wei Zhu, Xueyang Zhu, Zhiyuan Ma, Huiping Shen\",\"doi\":\"10.1115/1.4062149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Since previous studies of parallel mechanisms (PMs) have tended to favor symmetrical overall configuration to obtain relatively stable kinematic and dynamic performance and to satisfy isotropic requirements. The analysis of kinematic and dynamic performance of asymmetric mechanisms has been an issue of interest. In this paper, an asymmetric SCARA-type PM with 4 degrees-of-freedom (DOF) is proposed. First, the orientation characteristic set is calculated to obtain the DOF of the PM. Then, the inverse kinematics and the velocity and acceleration of each branch chain of the mechanism is analyzed. The dynamic model of the mechanism is established according to the principle of virtual work. The workspace of the mechanism is drawn according to the constraints that have been given to the mechanism's kinematic pairs. The singularity, dexterity, motion/force transfer performance and maximum acceleration performance of the mechanism are also analyzed. On this basis, the kinematic and dynamic performance evaluation indexes of the mechanism are studied. Finally, the workspace and acceleration performance of the mechanism are optimized based on the differential evolution algorithm (DE) to obtain the structural parameters when the mechanism achieves optimal performance. The asymmetric PM proposed in this paper, as well as the algorithm of performance index and optimization method used can provide some reference value for configuration design and optimization analysis.\",\"PeriodicalId\":49155,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062149\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4062149","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Performance Analysis and Optimal Design of a Novel Schöenflies-Motion Asymmetric Parallel Mechanism
Since previous studies of parallel mechanisms (PMs) have tended to favor symmetrical overall configuration to obtain relatively stable kinematic and dynamic performance and to satisfy isotropic requirements. The analysis of kinematic and dynamic performance of asymmetric mechanisms has been an issue of interest. In this paper, an asymmetric SCARA-type PM with 4 degrees-of-freedom (DOF) is proposed. First, the orientation characteristic set is calculated to obtain the DOF of the PM. Then, the inverse kinematics and the velocity and acceleration of each branch chain of the mechanism is analyzed. The dynamic model of the mechanism is established according to the principle of virtual work. The workspace of the mechanism is drawn according to the constraints that have been given to the mechanism's kinematic pairs. The singularity, dexterity, motion/force transfer performance and maximum acceleration performance of the mechanism are also analyzed. On this basis, the kinematic and dynamic performance evaluation indexes of the mechanism are studied. Finally, the workspace and acceleration performance of the mechanism are optimized based on the differential evolution algorithm (DE) to obtain the structural parameters when the mechanism achieves optimal performance. The asymmetric PM proposed in this paper, as well as the algorithm of performance index and optimization method used can provide some reference value for configuration design and optimization analysis.
期刊介绍:
Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.