CSRS-PPP用于验证埃及大地测量网络的可靠性

IF 0.7 Q4 ASTRONOMY & ASTROPHYSICS Artificial Satellites-Journal of Planetary Geodesy Pub Date : 2022-03-01 DOI:10.2478/arsa-2022-0004
A. Abdallah, T. Agag
{"title":"CSRS-PPP用于验证埃及大地测量网络的可靠性","authors":"A. Abdallah, T. Agag","doi":"10.2478/arsa-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract The development, utilization, and maintenance of continuously operating reference stations (CORS) network are vital in many areas of surveying and geodesy, such as controllinggeodetic networks, developinglocal ionospheric models, and estimating the tectonic plate movements. Accordingly, the Egyptian Surveying Authority (ESA) established a CORS network consisting of 40 stations covering the Nile valley and its delta in 2011. CORS collect global navigation satellite system (GNSS) data. Recently, Egypt has witnessed rapid growth in many infrastructure projects and the development of new cities on a national scale. Therefore, there is an urgent need to investigate the ESA-CORS accuracy; the quality of data from the ESA-CORS must be considered for monitoring continuous tectonic motion, coordinating changes, and for Egypt’s development plan. Contemporary research worldwide identified considerable benefits of the precise point positioning (PPP) solution of dual- or single-frequency GNSS data. This study investigates the reliability of using the CSRS-PPP service for three consecutive observation days of 32 ESA-CORS networks in Egypt and the surrounding six international GNSS services (IGS)-CORS. For ESA-CORS, the PPP solution showed a root mean square error (RMSE) value of 6 mm (standard deviation [SD] = 3–4 mm) in east and north; for the height direction, the solution indicated an RMSE value of 22 mm (SD was about 14 mm). At a confidence level of 95%, this study revealed that SD95% was 2 mm in east and north directions and 6–7 mm for the height direction. This study shows that the PPP solution shown from the ESA-CORS stations is associated with two times better for horizontal and four times for the height direction than the delivered form ESA-CORS stations.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reliability of CSRS-PPP for Validating the Egyptian Geodetic Cors Networks\",\"authors\":\"A. Abdallah, T. Agag\",\"doi\":\"10.2478/arsa-2022-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The development, utilization, and maintenance of continuously operating reference stations (CORS) network are vital in many areas of surveying and geodesy, such as controllinggeodetic networks, developinglocal ionospheric models, and estimating the tectonic plate movements. Accordingly, the Egyptian Surveying Authority (ESA) established a CORS network consisting of 40 stations covering the Nile valley and its delta in 2011. CORS collect global navigation satellite system (GNSS) data. Recently, Egypt has witnessed rapid growth in many infrastructure projects and the development of new cities on a national scale. Therefore, there is an urgent need to investigate the ESA-CORS accuracy; the quality of data from the ESA-CORS must be considered for monitoring continuous tectonic motion, coordinating changes, and for Egypt’s development plan. Contemporary research worldwide identified considerable benefits of the precise point positioning (PPP) solution of dual- or single-frequency GNSS data. This study investigates the reliability of using the CSRS-PPP service for three consecutive observation days of 32 ESA-CORS networks in Egypt and the surrounding six international GNSS services (IGS)-CORS. For ESA-CORS, the PPP solution showed a root mean square error (RMSE) value of 6 mm (standard deviation [SD] = 3–4 mm) in east and north; for the height direction, the solution indicated an RMSE value of 22 mm (SD was about 14 mm). At a confidence level of 95%, this study revealed that SD95% was 2 mm in east and north directions and 6–7 mm for the height direction. This study shows that the PPP solution shown from the ESA-CORS stations is associated with two times better for horizontal and four times for the height direction than the delivered form ESA-CORS stations.\",\"PeriodicalId\":43216,\"journal\":{\"name\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Satellites-Journal of Planetary Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/arsa-2022-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/arsa-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要连续运行参考站(CORS)网络的开发、利用和维护在测量和大地测量的许多领域至关重要,例如控制大地测量网络、开发局部电离层模型和估计构造板块运动。因此,埃及测绘局(ESA)于2011年建立了一个由40个站点组成的CORS网络,覆盖尼罗河流域及其三角洲。CORS收集全球导航卫星系统(GNSS)数据。最近,埃及见证了许多基础设施项目的快速增长和全国范围内新城的发展。因此,迫切需要研究ESA-CARS的准确性;在监测持续的构造运动、协调变化和埃及的发展计划时,必须考虑来自ESA-CARS的数据质量。世界各地的当代研究发现,双频或单频GNSS数据的精确点定位(PPP)解决方案具有相当大的好处。本研究调查了埃及32个ESA-CARS网络和周围六个国际GNSS服务(IGS)-CORS连续三天使用CSRS-PPP服务的可靠性。对于ESA-CARS,PPP解决方案在东部和北部显示出6 mm的均方根误差(RMSE)值(标准偏差[SD]=3–4 mm);对于高度方向,该解决方案表明RMSE值为22mm(SD为约14mm)。在95%的置信水平下,这项研究表明,SD95%在东部和北部方向为2 mm,在高度方向为6-7 mm。这项研究表明,ESA-CARS站的PPP解决方案在水平方向和高度方向上分别比从ESA-CORS站提供的解决方案好两倍和四倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability of CSRS-PPP for Validating the Egyptian Geodetic Cors Networks
Abstract The development, utilization, and maintenance of continuously operating reference stations (CORS) network are vital in many areas of surveying and geodesy, such as controllinggeodetic networks, developinglocal ionospheric models, and estimating the tectonic plate movements. Accordingly, the Egyptian Surveying Authority (ESA) established a CORS network consisting of 40 stations covering the Nile valley and its delta in 2011. CORS collect global navigation satellite system (GNSS) data. Recently, Egypt has witnessed rapid growth in many infrastructure projects and the development of new cities on a national scale. Therefore, there is an urgent need to investigate the ESA-CORS accuracy; the quality of data from the ESA-CORS must be considered for monitoring continuous tectonic motion, coordinating changes, and for Egypt’s development plan. Contemporary research worldwide identified considerable benefits of the precise point positioning (PPP) solution of dual- or single-frequency GNSS data. This study investigates the reliability of using the CSRS-PPP service for three consecutive observation days of 32 ESA-CORS networks in Egypt and the surrounding six international GNSS services (IGS)-CORS. For ESA-CORS, the PPP solution showed a root mean square error (RMSE) value of 6 mm (standard deviation [SD] = 3–4 mm) in east and north; for the height direction, the solution indicated an RMSE value of 22 mm (SD was about 14 mm). At a confidence level of 95%, this study revealed that SD95% was 2 mm in east and north directions and 6–7 mm for the height direction. This study shows that the PPP solution shown from the ESA-CORS stations is associated with two times better for horizontal and four times for the height direction than the delivered form ESA-CORS stations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
11.10%
发文量
0
期刊最新文献
Similarities and Differences in the Earth’s Water Variations Signal Provided by Grace and AMSR-E Observations Using Maximum Covariance Analysis at Various Land Cover Data Backgrounds Medium- and Long-Term Prediction of Polar Motion Using Weighted Least Squares Extrapolation and Vector Autoregressive Modeling Study on Secular Change of the Earth’s Rotation Rate Based on Solar Eclipse Observation Records on October 13, 443 BC Interstellar Probe: Science, Engineering, Logistic, Economic, and Social Factors Geodynamic Studies in the Pieniny Klippen Belt in 2004–2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1