基于MARS的车中碰撞检测与避免系统基于偏移的曲线路径估计

N. Prabhakaran, M. S. Sudhakar
{"title":"基于MARS的车中碰撞检测与避免系统基于偏移的曲线路径估计","authors":"N. Prabhakaran, M. S. Sudhakar","doi":"10.1108/IJIUS-04-2018-0009","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to propose a novel curvilinear path estimation model employing multivariate adaptive regression splines (MARS) for mid vehicle collision avoidance. The two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase. This arrangement significantly narrows the gap between the estimated and the true path analyzed using the mean square error (MSE) for different offsets on Next Generation Simulation Interstate 80 (NGSIM I-80) data set. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation, thereby, making it amicable for real-road scenarios.\n\n\nDesign/methodology/approach\nThe two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase.\n\n\nFindings\nThis arrangement significantly narrows the gap between the estimated and the true path studied using MSE for different offsets on real (Next Generation Simulation-NGSIM) data. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation. Thereby, making it amicable for real-road scenarios.\n\n\nOriginality/value\nThis paper builds a mathematical model that considers the offset and host (mid) vehicles for appropriate path fitting.\n","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/IJIUS-04-2018-0009","citationCount":"2","resultStr":"{\"title\":\"Offset-based curvilinear path estimation for mid vehicle collision detection and avoidance system using MARS\",\"authors\":\"N. Prabhakaran, M. S. Sudhakar\",\"doi\":\"10.1108/IJIUS-04-2018-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this paper is to propose a novel curvilinear path estimation model employing multivariate adaptive regression splines (MARS) for mid vehicle collision avoidance. The two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase. This arrangement significantly narrows the gap between the estimated and the true path analyzed using the mean square error (MSE) for different offsets on Next Generation Simulation Interstate 80 (NGSIM I-80) data set. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation, thereby, making it amicable for real-road scenarios.\\n\\n\\nDesign/methodology/approach\\nThe two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase.\\n\\n\\nFindings\\nThis arrangement significantly narrows the gap between the estimated and the true path studied using MSE for different offsets on real (Next Generation Simulation-NGSIM) data. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation. Thereby, making it amicable for real-road scenarios.\\n\\n\\nOriginality/value\\nThis paper builds a mathematical model that considers the offset and host (mid) vehicles for appropriate path fitting.\\n\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1108/IJIUS-04-2018-0009\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/IJIUS-04-2018-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/IJIUS-04-2018-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 2

摘要

目的本文提出了一种新的基于多元自适应回归样条的曲线路径估计模型。两阶段路径估计方案最初使用前部和中部(宿主)车辆的偏移(位置)值来构建清晰模型。得到的清晰模型是MARS回归,以在第二阶段提供紧密一致的实际模型。对于下一代仿真州际80(NGSIM I-80)数据集上的不同偏移,这种布置显著缩小了使用均方误差(MSE)分析的估计路径和真实路径之间的差距。所提出的模型还通过在路径估计中包含主车辆的反向运动来覆盖平行停车,从而使其对真实道路场景友好。设计/方法/方法两阶段路径估计方案最初使用前部和中部(宿主)车辆的偏移(位置)值来建立清晰的模型。得到的清晰模型是MARS回归,以在第二阶段提供紧密一致的实际模型。发现对于真实(下一代模拟NGSIM)数据上的不同偏移,这种安排显著缩小了使用MSE研究的估计路径和真实路径之间的差距。所提出的模型还通过在路径估计中包含主车辆的反向运动来覆盖平行停车。从而使其对真实的道路场景友好。独创性/价值本文建立了一个数学模型,该模型考虑了偏移和宿主(中间)车辆,以进行适当的路径拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Offset-based curvilinear path estimation for mid vehicle collision detection and avoidance system using MARS
Purpose The purpose of this paper is to propose a novel curvilinear path estimation model employing multivariate adaptive regression splines (MARS) for mid vehicle collision avoidance. The two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase. This arrangement significantly narrows the gap between the estimated and the true path analyzed using the mean square error (MSE) for different offsets on Next Generation Simulation Interstate 80 (NGSIM I-80) data set. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation, thereby, making it amicable for real-road scenarios. Design/methodology/approach The two-phase path estimation scheme initially uses the offset (position) value of the front and the mid (host) vehicle to build the crisp model. The resulting crisp model is MARS regressed to deliver a closely aligned actual model in the second phase. Findings This arrangement significantly narrows the gap between the estimated and the true path studied using MSE for different offsets on real (Next Generation Simulation-NGSIM) data. The presented model also covers parallel parking by encompassing the reverse motion of the host vehicle in the path estimation. Thereby, making it amicable for real-road scenarios. Originality/value This paper builds a mathematical model that considers the offset and host (mid) vehicles for appropriate path fitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
期刊最新文献
Design of hexacopter and finite element analysis for material selection Towards a novel cyber physical control system framework: a deep learning driven use case Employing a multi-sensor fusion array to detect objects for an orbital transfer vehicle to remove space debris Communication via quad/hexa-copters during disasters Nonlinear optimal control for UAVs with tilting rotors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1