复合型结构剪切连接件的创新钢板头螺栓

Q3 Engineering Advances in Technology Innovation Pub Date : 2023-07-04 DOI:10.46604/aiti.2023.9196
Rahul Tarachand Pardeshi, Prakash Abhiram Singh, Yogesh Deoram Patil
{"title":"复合型结构剪切连接件的创新钢板头螺栓","authors":"Rahul Tarachand Pardeshi, Prakash Abhiram Singh, Yogesh Deoram Patil","doi":"10.46604/aiti.2023.9196","DOIUrl":null,"url":null,"abstract":"This study proposes an innovative pennon plate-headed stud of shear connectors. The proposed stud consists of two triangular-shaped steel plates on both sides of the headed stud; it is expected to increase the shear capacity of a steel-concrete composite connection. Nonlinear finite element analysis is carried out using ABAQUS to analyze the response of 54 models of PPH studs. A full factorial design and the analysis of variance are employed in the design of experiments (DOE). The impacts of factors and their interactions, such as the thickness and height of the pennon plates, concrete grades, and stud diameters, are captured by using 33 × 21 DOE with a 5% significance level. The results show that the ultimate shear resistance is increased apparently. Additionally, the concrete grade and stud diameter significantly influence the capacity of the connection. Moreover, connection slip is greatly affected by concrete grade, the height of the plate, and the interaction between plate thickness and height.","PeriodicalId":52314,"journal":{"name":"Advances in Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Steel Pennon Plate-Headed Stud of Shear Connectors for Composite Structures\",\"authors\":\"Rahul Tarachand Pardeshi, Prakash Abhiram Singh, Yogesh Deoram Patil\",\"doi\":\"10.46604/aiti.2023.9196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes an innovative pennon plate-headed stud of shear connectors. The proposed stud consists of two triangular-shaped steel plates on both sides of the headed stud; it is expected to increase the shear capacity of a steel-concrete composite connection. Nonlinear finite element analysis is carried out using ABAQUS to analyze the response of 54 models of PPH studs. A full factorial design and the analysis of variance are employed in the design of experiments (DOE). The impacts of factors and their interactions, such as the thickness and height of the pennon plates, concrete grades, and stud diameters, are captured by using 33 × 21 DOE with a 5% significance level. The results show that the ultimate shear resistance is increased apparently. Additionally, the concrete grade and stud diameter significantly influence the capacity of the connection. Moreover, connection slip is greatly affected by concrete grade, the height of the plate, and the interaction between plate thickness and height.\",\"PeriodicalId\":52314,\"journal\":{\"name\":\"Advances in Technology Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/aiti.2023.9196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/aiti.2023.9196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种创新的五角形板头螺栓剪力连接。所建议的螺柱由位于头螺柱两侧的两块三角形钢板组成;预计将提高钢-混凝土组合连接的抗剪能力。采用ABAQUS软件对54种PPH螺栓模型进行非线性有限元分析。实验设计采用全因子设计和方差分析。采用33 × 21 DOE,显著性水平为5%,捕获了各因素的影响及其相互作用,如角钢板的厚度和高度、混凝土等级和螺柱直径。结果表明:该结构的极限抗剪能力明显提高。此外,混凝土等级和螺柱直径对连接能力有显著影响。此外,连接滑移受混凝土标号、板的高度以及板厚与高度的相互作用影响较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative Steel Pennon Plate-Headed Stud of Shear Connectors for Composite Structures
This study proposes an innovative pennon plate-headed stud of shear connectors. The proposed stud consists of two triangular-shaped steel plates on both sides of the headed stud; it is expected to increase the shear capacity of a steel-concrete composite connection. Nonlinear finite element analysis is carried out using ABAQUS to analyze the response of 54 models of PPH studs. A full factorial design and the analysis of variance are employed in the design of experiments (DOE). The impacts of factors and their interactions, such as the thickness and height of the pennon plates, concrete grades, and stud diameters, are captured by using 33 × 21 DOE with a 5% significance level. The results show that the ultimate shear resistance is increased apparently. Additionally, the concrete grade and stud diameter significantly influence the capacity of the connection. Moreover, connection slip is greatly affected by concrete grade, the height of the plate, and the interaction between plate thickness and height.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Technology Innovation
Advances in Technology Innovation Energy-Energy Engineering and Power Technology
CiteScore
1.90
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊最新文献
Synthesis and Characterization of Phase Change Microcapsules Containing Nano-Graphite Challenges and Solutions to Criminal Liability for the Actions of Robots and AI Selection of Elevation Models for Flood Inundation Map Generation in Small Urban Stream: Case Study of Anyang Stream Efficient Object Detection and Intelligent Information Display Using YOLOv4-Tiny The Prediction of Low-Rise Building Construction Cost Estimation Using Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1