{"title":"带分流器的并排方形圆柱体流动特性数值模拟","authors":"Hamid Rahman, Kayenat Qadim, Rahman Ullah, Waqas Sarwar Abbasi","doi":"10.1007/s40571-023-00572-3","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of splitters on the flow structure mechanism around two side-by-side square cylinders with connected splitters at downstream position has been investigated in this article using lattice Boltzmann method at a fixed Reynolds number of 150. The normalized distance between the two cylinders is varied from 0.5 to 5 (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5), and the normalized length of the connected splitters is varied from 1 to 4 with an increment of 0.5 (e.g., 1, 1.5, 2, 2.5, 3, 3.5, 4). For varying spacing ratios and length of splitters, the flow structure has been characterized into single bluff body, flip-flopping, in-phase non-synchronized, and anti-phase synchronized flow pattern. Changing the length of the splitters influences force statistics like the mean drag coefficient and the Strouhal number, which are examined in this study as well. The mean drag coefficients and Strouhal numbers of two side-by-side square cylinders with splitters are compared to the data of two side-by-side square cylinders without splitters, and it is observed that these forces did not always reduce and that in some cases, accession rather than reduction may happen. The computational and experimental results of other researchers are compared to the current observed flow patterns, and good agreement is found.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"10 5","pages":"1397 - 1409"},"PeriodicalIF":2.8000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations of flow characteristics of two side-by-side square cylinders with connected splitters\",\"authors\":\"Hamid Rahman, Kayenat Qadim, Rahman Ullah, Waqas Sarwar Abbasi\",\"doi\":\"10.1007/s40571-023-00572-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The influence of splitters on the flow structure mechanism around two side-by-side square cylinders with connected splitters at downstream position has been investigated in this article using lattice Boltzmann method at a fixed Reynolds number of 150. The normalized distance between the two cylinders is varied from 0.5 to 5 (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5), and the normalized length of the connected splitters is varied from 1 to 4 with an increment of 0.5 (e.g., 1, 1.5, 2, 2.5, 3, 3.5, 4). For varying spacing ratios and length of splitters, the flow structure has been characterized into single bluff body, flip-flopping, in-phase non-synchronized, and anti-phase synchronized flow pattern. Changing the length of the splitters influences force statistics like the mean drag coefficient and the Strouhal number, which are examined in this study as well. The mean drag coefficients and Strouhal numbers of two side-by-side square cylinders with splitters are compared to the data of two side-by-side square cylinders without splitters, and it is observed that these forces did not always reduce and that in some cases, accession rather than reduction may happen. The computational and experimental results of other researchers are compared to the current observed flow patterns, and good agreement is found.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"10 5\",\"pages\":\"1397 - 1409\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-023-00572-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00572-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Numerical simulations of flow characteristics of two side-by-side square cylinders with connected splitters
The influence of splitters on the flow structure mechanism around two side-by-side square cylinders with connected splitters at downstream position has been investigated in this article using lattice Boltzmann method at a fixed Reynolds number of 150. The normalized distance between the two cylinders is varied from 0.5 to 5 (e.g., 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5), and the normalized length of the connected splitters is varied from 1 to 4 with an increment of 0.5 (e.g., 1, 1.5, 2, 2.5, 3, 3.5, 4). For varying spacing ratios and length of splitters, the flow structure has been characterized into single bluff body, flip-flopping, in-phase non-synchronized, and anti-phase synchronized flow pattern. Changing the length of the splitters influences force statistics like the mean drag coefficient and the Strouhal number, which are examined in this study as well. The mean drag coefficients and Strouhal numbers of two side-by-side square cylinders with splitters are compared to the data of two side-by-side square cylinders without splitters, and it is observed that these forces did not always reduce and that in some cases, accession rather than reduction may happen. The computational and experimental results of other researchers are compared to the current observed flow patterns, and good agreement is found.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.