源参数反演的黑洞粒子群优化方法:在2015年智利Calbuco火山喷发中的应用

IF 2.1 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Journal of Geodynamics Pub Date : 2021-07-01 DOI:10.1016/j.jog.2021.101849
Leyang Wang , Xibo Jin , Wenbin Xu , Guangyu Xu
{"title":"源参数反演的黑洞粒子群优化方法:在2015年智利Calbuco火山喷发中的应用","authors":"Leyang Wang ,&nbsp;Xibo Jin ,&nbsp;Wenbin Xu ,&nbsp;Guangyu Xu","doi":"10.1016/j.jog.2021.101849","DOIUrl":null,"url":null,"abstract":"<div><p><span>The traditional genetic algorithm and simulated annealing methods have been widely used in geophysical modeling. However, these nonlinear inversion methods require a lot of calculations, many control parameters and are unstable. In this paper, a particle swarm optimization algorithm combined with black hole strategy (BH-PSO) is proposed to solve these problems. The comprehensive experiments show that the BH-PSO method consumes less time than the simulated annealing (SA) method and has a higher accuracy than the genetic algorithm (GA). It is more applicable to the inversion of parameters of volcanic magma chamber, and easier to be generalized to other kinematic source parameters inversion. Based on BH-PSO method, Sentinel-1 data, composite dislocation model (CDM), Yang model and Mogi model, the magma chamber parameters of Calbuco eruption in 2015 were retrieved. The results show that the RMSE of CDM model is 1.1 cm, which can better fit the surface deformation than the Mogi model and Yang model. The final results show that the magma chamber is located about 0.8 km northeast of the crater, about 9 km below the surface, and the total volume of the erupted volcanic material obtained with the CDM Model is of 0.209 km</span><sup>3</sup>, without considering dense rock equivalent.</p></div>","PeriodicalId":54823,"journal":{"name":"Journal of Geodynamics","volume":"146 ","pages":"Article 101849"},"PeriodicalIF":2.1000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jog.2021.101849","citationCount":"3","resultStr":"{\"title\":\"A black hole particle swarm optimization method for the source parameters inversion: application to the 2015 Calbuco eruption, Chile\",\"authors\":\"Leyang Wang ,&nbsp;Xibo Jin ,&nbsp;Wenbin Xu ,&nbsp;Guangyu Xu\",\"doi\":\"10.1016/j.jog.2021.101849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The traditional genetic algorithm and simulated annealing methods have been widely used in geophysical modeling. However, these nonlinear inversion methods require a lot of calculations, many control parameters and are unstable. In this paper, a particle swarm optimization algorithm combined with black hole strategy (BH-PSO) is proposed to solve these problems. The comprehensive experiments show that the BH-PSO method consumes less time than the simulated annealing (SA) method and has a higher accuracy than the genetic algorithm (GA). It is more applicable to the inversion of parameters of volcanic magma chamber, and easier to be generalized to other kinematic source parameters inversion. Based on BH-PSO method, Sentinel-1 data, composite dislocation model (CDM), Yang model and Mogi model, the magma chamber parameters of Calbuco eruption in 2015 were retrieved. The results show that the RMSE of CDM model is 1.1 cm, which can better fit the surface deformation than the Mogi model and Yang model. The final results show that the magma chamber is located about 0.8 km northeast of the crater, about 9 km below the surface, and the total volume of the erupted volcanic material obtained with the CDM Model is of 0.209 km</span><sup>3</sup>, without considering dense rock equivalent.</p></div>\",\"PeriodicalId\":54823,\"journal\":{\"name\":\"Journal of Geodynamics\",\"volume\":\"146 \",\"pages\":\"Article 101849\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jog.2021.101849\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264370721000351\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264370721000351","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

传统的遗传算法和模拟退火方法在地球物理模拟中得到了广泛的应用。然而,这些非线性反演方法计算量大,控制参数多,且不稳定。本文提出了一种结合黑洞策略的粒子群优化算法(BH-PSO)来解决这些问题。综合实验表明,BH-PSO方法比模拟退火(SA)方法耗时更少,比遗传算法(GA)具有更高的精度。该方法更适用于火山岩浆房参数的反演,也更容易推广到其他运动源参数的反演中。基于BH-PSO方法、Sentinel-1数据、复合位错模型(CDM)、Yang模型和Mogi模型,反演了2015年Calbuco火山喷发的岩浆室参数。结果表明,CDM模型的RMSE为1.1 cm,比Mogi模型和Yang模型更能拟合地表变形;最终结果表明,岩浆库位于火山口东北方向约0.8 km处,地表以下约9 km处,在不考虑致密岩石当量的情况下,CDM模型得到的喷发火山物质的总体积为0.209 km3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A black hole particle swarm optimization method for the source parameters inversion: application to the 2015 Calbuco eruption, Chile

The traditional genetic algorithm and simulated annealing methods have been widely used in geophysical modeling. However, these nonlinear inversion methods require a lot of calculations, many control parameters and are unstable. In this paper, a particle swarm optimization algorithm combined with black hole strategy (BH-PSO) is proposed to solve these problems. The comprehensive experiments show that the BH-PSO method consumes less time than the simulated annealing (SA) method and has a higher accuracy than the genetic algorithm (GA). It is more applicable to the inversion of parameters of volcanic magma chamber, and easier to be generalized to other kinematic source parameters inversion. Based on BH-PSO method, Sentinel-1 data, composite dislocation model (CDM), Yang model and Mogi model, the magma chamber parameters of Calbuco eruption in 2015 were retrieved. The results show that the RMSE of CDM model is 1.1 cm, which can better fit the surface deformation than the Mogi model and Yang model. The final results show that the magma chamber is located about 0.8 km northeast of the crater, about 9 km below the surface, and the total volume of the erupted volcanic material obtained with the CDM Model is of 0.209 km3, without considering dense rock equivalent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodynamics
Journal of Geodynamics 地学-地球化学与地球物理
CiteScore
4.60
自引率
0.00%
发文量
21
审稿时长
6-12 weeks
期刊介绍: The Journal of Geodynamics is an international and interdisciplinary forum for the publication of results and discussions of solid earth research in geodetic, geophysical, geological and geochemical geodynamics, with special emphasis on the large scale processes involved.
期刊最新文献
Unveiling crustal deformation patterns along the north Tabriz fault from 2015 to 2022 using multi-temporal InSAR analysis Alternative thermal histories of Earth-like planets: Influence of key parameters Tectonic reevaluation of West Cameroon domain: Insights from high-resolution gravity models and advanced edge detection methods Insights into the crustal and the magmatic feeding structure at the Payunia Volcanic Province highlighted by geophysical methods, in the retroarc of the Southern Central Andes Artificial intelligence for assessing the planets' positions as a precursor to earthquake events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1