{"title":"经编间隔织物增强硅橡胶复合材料压缩性能的有限元分析","authors":"Zi-xiang Zhou, Si Chen","doi":"10.1177/24723444221119846","DOIUrl":null,"url":null,"abstract":"In this study, the compression behaviors of silicone rubber composites reinforced by warp-knitted spacer fabrics under 20% deformation were investigated by experiment and a finite element analysis method. Based on the compression test, including the compression tests of composites and the warp-knitted spacer fabrics, the compression behaviors of composites were investigated. This revealed that the composites exhibited excellent elastic recovery abilities. Furthermore, the finite element analysis model of composites was established based on the parameters of the geometry and performance of the composites. The simulated results by the finite element analysis model were compared with the experimental ones to verify the accuracy of the model. It is obvious that the compressive finite element analysis model had good agreement with the experimental results, indicating that the compression performance of composites can be effectively simulated by the finite element analysis method. It is a useful tool for understanding the compression mechanism of composites and optimizing the composites’ parameters for cushioning applications.","PeriodicalId":6955,"journal":{"name":"AATCC Journal of Research","volume":"9 1","pages":"240 - 247"},"PeriodicalIF":0.6000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Analysis of Compression Behaviors of Silicone Rubber Composites Reinforced by Warp-Knitted Spacer Fabrics\",\"authors\":\"Zi-xiang Zhou, Si Chen\",\"doi\":\"10.1177/24723444221119846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the compression behaviors of silicone rubber composites reinforced by warp-knitted spacer fabrics under 20% deformation were investigated by experiment and a finite element analysis method. Based on the compression test, including the compression tests of composites and the warp-knitted spacer fabrics, the compression behaviors of composites were investigated. This revealed that the composites exhibited excellent elastic recovery abilities. Furthermore, the finite element analysis model of composites was established based on the parameters of the geometry and performance of the composites. The simulated results by the finite element analysis model were compared with the experimental ones to verify the accuracy of the model. It is obvious that the compressive finite element analysis model had good agreement with the experimental results, indicating that the compression performance of composites can be effectively simulated by the finite element analysis method. It is a useful tool for understanding the compression mechanism of composites and optimizing the composites’ parameters for cushioning applications.\",\"PeriodicalId\":6955,\"journal\":{\"name\":\"AATCC Journal of Research\",\"volume\":\"9 1\",\"pages\":\"240 - 247\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AATCC Journal of Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/24723444221119846\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AATCC Journal of Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/24723444221119846","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Finite Element Analysis of Compression Behaviors of Silicone Rubber Composites Reinforced by Warp-Knitted Spacer Fabrics
In this study, the compression behaviors of silicone rubber composites reinforced by warp-knitted spacer fabrics under 20% deformation were investigated by experiment and a finite element analysis method. Based on the compression test, including the compression tests of composites and the warp-knitted spacer fabrics, the compression behaviors of composites were investigated. This revealed that the composites exhibited excellent elastic recovery abilities. Furthermore, the finite element analysis model of composites was established based on the parameters of the geometry and performance of the composites. The simulated results by the finite element analysis model were compared with the experimental ones to verify the accuracy of the model. It is obvious that the compressive finite element analysis model had good agreement with the experimental results, indicating that the compression performance of composites can be effectively simulated by the finite element analysis method. It is a useful tool for understanding the compression mechanism of composites and optimizing the composites’ parameters for cushioning applications.
期刊介绍:
AATCC Journal of Research. This textile research journal has a broad scope: from advanced materials, fibers, and textile and polymer chemistry, to color science, apparel design, and sustainability.
Now indexed by Science Citation Index Extended (SCIE) and discoverable in the Clarivate Analytics Web of Science Core Collection! The Journal’s impact factor is available in Journal Citation Reports.