SASH1 SLy蛋白相关紊乱区(SPIDER)的溶液核磁共振骨架分配

IF 0.8 4区 生物学 Q4 BIOPHYSICS Biomolecular NMR Assignments Pub Date : 2023-05-08 DOI:10.1007/s12104-023-10134-6
Christopher M. Clements, Beat Vögeli, Yiqun G. Shellman, Morkos A. Henen
{"title":"SASH1 SLy蛋白相关紊乱区(SPIDER)的溶液核磁共振骨架分配","authors":"Christopher M. Clements,&nbsp;Beat Vögeli,&nbsp;Yiqun G. Shellman,&nbsp;Morkos A. Henen","doi":"10.1007/s12104-023-10134-6","DOIUrl":null,"url":null,"abstract":"<div><p>SASH1 is a scaffold protein with context-dependent biological functions in cell adhesion, tumor metastasis, lung development, and pigmentation. As a member of the SLy protein family, it contains the conserved SLY, SH3, and SAM domains. The 19 kDa SLY domain harbors over 70% of the SASH1 variants associated with pigmentation disorders. However, its solution structure or dynamics have not been investigated yet, and its exact position in the sequence is not clearly defined. Based on the bioinformatic and experimental evidence, we propose renaming this region to the <u>S</u>Ly <u>P</u>roteins Assoc<u>i</u>ated <u>D</u>isorder<u>e</u>d <u>R</u>egion (SPIDER) and defining the exact position to be amino acids 400–554 of SASH1. We have previously identified a variant in this region linked to a pigmentation disorder, S519N. Here, we used a novel deuteration technique, a suite of TROSY-based 3D NMR experiments, and a high-quality HNN to obtain near complete solution backbone assignment of SASH1’s SPIDER. A comparison with the chemical shifts of non-variant (S519) SPIDER shows that the S519N substitution does not alter the free form solution structural propensities of SPIDER. This assignment is the first step to characterize the role of SPIDER in SASH1-mediated cellular functions and provides a model for the future study of sister SPIDER domains in the SLy protein family.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"151 - 157"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10134-6.pdf","citationCount":"2","resultStr":"{\"title\":\"Solution NMR backbone assignment of the SASH1 SLy proteins associated disordered region (SPIDER)\",\"authors\":\"Christopher M. Clements,&nbsp;Beat Vögeli,&nbsp;Yiqun G. Shellman,&nbsp;Morkos A. Henen\",\"doi\":\"10.1007/s12104-023-10134-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>SASH1 is a scaffold protein with context-dependent biological functions in cell adhesion, tumor metastasis, lung development, and pigmentation. As a member of the SLy protein family, it contains the conserved SLY, SH3, and SAM domains. The 19 kDa SLY domain harbors over 70% of the SASH1 variants associated with pigmentation disorders. However, its solution structure or dynamics have not been investigated yet, and its exact position in the sequence is not clearly defined. Based on the bioinformatic and experimental evidence, we propose renaming this region to the <u>S</u>Ly <u>P</u>roteins Assoc<u>i</u>ated <u>D</u>isorder<u>e</u>d <u>R</u>egion (SPIDER) and defining the exact position to be amino acids 400–554 of SASH1. We have previously identified a variant in this region linked to a pigmentation disorder, S519N. Here, we used a novel deuteration technique, a suite of TROSY-based 3D NMR experiments, and a high-quality HNN to obtain near complete solution backbone assignment of SASH1’s SPIDER. A comparison with the chemical shifts of non-variant (S519) SPIDER shows that the S519N substitution does not alter the free form solution structural propensities of SPIDER. This assignment is the first step to characterize the role of SPIDER in SASH1-mediated cellular functions and provides a model for the future study of sister SPIDER domains in the SLy protein family.</p></div>\",\"PeriodicalId\":492,\"journal\":{\"name\":\"Biomolecular NMR Assignments\",\"volume\":\"17 1\",\"pages\":\"151 - 157\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12104-023-10134-6.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular NMR Assignments\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12104-023-10134-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-023-10134-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

SASH1是一种支架蛋白,在细胞粘附、肿瘤转移、肺发育和色素沉着等方面具有环境依赖性的生物学功能。作为SLy蛋白家族的成员,它包含保守的SLy、SH3和SAM结构域。19 kDa的SLY结构域包含70%以上与色素沉着疾病相关的SASH1变异。然而,其解的结构或动力学尚未被研究,其在序列中的确切位置也没有明确的定义。基于生物信息学和实验证据,我们建议将该区域重新命名为SLy蛋白相关紊乱区(SPIDER),并确定其确切位置为SASH1的400-554氨基酸。我们之前已经在这个区域发现了一个与色素沉着障碍有关的变异,S519N。在这里,我们使用了一种新颖的氘化技术,一套基于trosy的3D核磁共振实验,以及高质量的HNN来获得SASH1的SPIDER的接近完整的溶液骨架分配。与非变型(S519) SPIDER的化学位移比较表明,S519N取代没有改变SPIDER的自由形态溶液结构倾向。这是表征SPIDER在sash1介导的细胞功能中的作用的第一步,并为未来研究SLy蛋白家族中的姐妹SPIDER结构域提供了一个模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solution NMR backbone assignment of the SASH1 SLy proteins associated disordered region (SPIDER)

SASH1 is a scaffold protein with context-dependent biological functions in cell adhesion, tumor metastasis, lung development, and pigmentation. As a member of the SLy protein family, it contains the conserved SLY, SH3, and SAM domains. The 19 kDa SLY domain harbors over 70% of the SASH1 variants associated with pigmentation disorders. However, its solution structure or dynamics have not been investigated yet, and its exact position in the sequence is not clearly defined. Based on the bioinformatic and experimental evidence, we propose renaming this region to the SLy Proteins Associated Disordered Region (SPIDER) and defining the exact position to be amino acids 400–554 of SASH1. We have previously identified a variant in this region linked to a pigmentation disorder, S519N. Here, we used a novel deuteration technique, a suite of TROSY-based 3D NMR experiments, and a high-quality HNN to obtain near complete solution backbone assignment of SASH1’s SPIDER. A comparison with the chemical shifts of non-variant (S519) SPIDER shows that the S519N substitution does not alter the free form solution structural propensities of SPIDER. This assignment is the first step to characterize the role of SPIDER in SASH1-mediated cellular functions and provides a model for the future study of sister SPIDER domains in the SLy protein family.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
期刊最新文献
1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea Imino chemical shift assignments of tRNAAsp, tRNAVal and tRNAPhe from Escherichia coli NMR assignment of the conserved bacterial DNA replication protein DnaA domain IV Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1