一种低成本的基于视觉耳标的肉牛精准养殖识别系统

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Information Processing in Agriculture Pub Date : 2024-03-01 DOI:10.1016/j.inpa.2022.10.003
Andrea Pretto , Gianpaolo Savio , Flaviana Gottardo , Francesca Uccheddu , Gianmaria Concheri
{"title":"一种低成本的基于视觉耳标的肉牛精准养殖识别系统","authors":"Andrea Pretto ,&nbsp;Gianpaolo Savio ,&nbsp;Flaviana Gottardo ,&nbsp;Francesca Uccheddu ,&nbsp;Gianmaria Concheri","doi":"10.1016/j.inpa.2022.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>The precision livestock farming (PLF) has the objective to maximize each animal's performance while reducing the environmental impact and maintaining the quality and safety of meat production. Among the PLF techniques, the personalised management of each individual animal based on sensors systems, represents a viable option. It is worth noting that the implementation of an effective PLF approach can be still expensive, especially for small and medium-sized farms; for this reason, to guarantee the sustainability of a customized livestock management system and encourage its use, plug and play and cost-effective systems are needed. Within this context, we present a novel low-cost method for identifying beef cattle and recognizing their basic activities by a single surveillance camera. By leveraging the current state-of-the-art methods for real-time object detection, (i.e., YOLOv3) cattle's face areas, we propose a novel mechanism able to detect the ear tag as well as the water ingestion state when the cattle is close to the drinker. The cow IDs are read by an Optical Character Recognition (OCR) algorithm for which, an ad hoc error correction algorithm is here presented to avoid numbers misreading and correctly match the IDs to only actually present IDs. Thanks to the detection of the tag position, the OCR algorithm can be applied only to a specific region of interest reducing the computational cost and the time needed. Activity times for the areas are outputted as cattle activity recognition results. Evaluation results demonstrate the effectiveness of our proposed method, showing a [email protected] of 89%.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"11 1","pages":"Pages 117-126"},"PeriodicalIF":7.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221431732200083X/pdfft?md5=7cfaf05969ff7b29f8fe80e9ab1fe516&pid=1-s2.0-S221431732200083X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel low-cost visual ear tag based identification system for precision beef cattle livestock farming\",\"authors\":\"Andrea Pretto ,&nbsp;Gianpaolo Savio ,&nbsp;Flaviana Gottardo ,&nbsp;Francesca Uccheddu ,&nbsp;Gianmaria Concheri\",\"doi\":\"10.1016/j.inpa.2022.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The precision livestock farming (PLF) has the objective to maximize each animal's performance while reducing the environmental impact and maintaining the quality and safety of meat production. Among the PLF techniques, the personalised management of each individual animal based on sensors systems, represents a viable option. It is worth noting that the implementation of an effective PLF approach can be still expensive, especially for small and medium-sized farms; for this reason, to guarantee the sustainability of a customized livestock management system and encourage its use, plug and play and cost-effective systems are needed. Within this context, we present a novel low-cost method for identifying beef cattle and recognizing their basic activities by a single surveillance camera. By leveraging the current state-of-the-art methods for real-time object detection, (i.e., YOLOv3) cattle's face areas, we propose a novel mechanism able to detect the ear tag as well as the water ingestion state when the cattle is close to the drinker. The cow IDs are read by an Optical Character Recognition (OCR) algorithm for which, an ad hoc error correction algorithm is here presented to avoid numbers misreading and correctly match the IDs to only actually present IDs. Thanks to the detection of the tag position, the OCR algorithm can be applied only to a specific region of interest reducing the computational cost and the time needed. Activity times for the areas are outputted as cattle activity recognition results. Evaluation results demonstrate the effectiveness of our proposed method, showing a [email protected] of 89%.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"11 1\",\"pages\":\"Pages 117-126\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221431732200083X/pdfft?md5=7cfaf05969ff7b29f8fe80e9ab1fe516&pid=1-s2.0-S221431732200083X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221431732200083X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221431732200083X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

精准畜牧业(PLF)的目标是最大限度地提高每头牲畜的性能,同时减少对环境的影响并保持肉类生产的质量和安全。在精准畜牧技术中,基于传感器系统对每头牲畜进行个性化管理是一种可行的选择。值得注意的是,实施有效的 PLF 方法仍然成本高昂,尤其是对中小型农场而言;因此,为了保证定制化牲畜管理系统的可持续性并鼓励其使用,需要即插即用且具有成本效益的系统。在此背景下,我们提出了一种新型的低成本方法,通过单个监控摄像头识别肉牛并识别其基本活动。通过利用当前最先进的实时对象检测方法(即 YOLOv3)检测牛的面部区域,我们提出了一种新的机制,能够检测牛的耳标以及牛靠近饮水器时的饮水状态。奶牛 ID 由光学字符识别 (OCR) 算法读取,为此,我们提出了一种特殊的纠错算法,以避免数字误读,并将 ID 与实际存在的 ID 正确匹配。通过对标签位置的检测,OCR 算法只适用于特定的感兴趣区域,从而减少了计算成本和所需时间。各区域的活动时间将作为牛的活动识别结果输出。评估结果表明,我们提出的方法非常有效,其[email protected]识别率高达 89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel low-cost visual ear tag based identification system for precision beef cattle livestock farming

The precision livestock farming (PLF) has the objective to maximize each animal's performance while reducing the environmental impact and maintaining the quality and safety of meat production. Among the PLF techniques, the personalised management of each individual animal based on sensors systems, represents a viable option. It is worth noting that the implementation of an effective PLF approach can be still expensive, especially for small and medium-sized farms; for this reason, to guarantee the sustainability of a customized livestock management system and encourage its use, plug and play and cost-effective systems are needed. Within this context, we present a novel low-cost method for identifying beef cattle and recognizing their basic activities by a single surveillance camera. By leveraging the current state-of-the-art methods for real-time object detection, (i.e., YOLOv3) cattle's face areas, we propose a novel mechanism able to detect the ear tag as well as the water ingestion state when the cattle is close to the drinker. The cow IDs are read by an Optical Character Recognition (OCR) algorithm for which, an ad hoc error correction algorithm is here presented to avoid numbers misreading and correctly match the IDs to only actually present IDs. Thanks to the detection of the tag position, the OCR algorithm can be applied only to a specific region of interest reducing the computational cost and the time needed. Activity times for the areas are outputted as cattle activity recognition results. Evaluation results demonstrate the effectiveness of our proposed method, showing a [email protected] of 89%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
期刊最新文献
Editorial Board Artificial intelligence solutions to reduce information asymmetry for Colombian cocoa small-scale farmers Automated detection of sugarcane crop lines from UAV images using deep learning Detection and counting method of juvenile abalones based on improved SSD network Constrained temperature and relative humidity predictive control: Agricultural greenhouse case of study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1