{"title":"基于ch3nh3sni3的环保太阳能电池性能模拟","authors":"Z. Omarova","doi":"10.31489/2022no2/58-64","DOIUrl":null,"url":null,"abstract":"Large-scale deployment of the perovskite photovoltaic technology using such high-performance materials as СH3NH3PbI3may face serious environmental issuesin the future. Implementation of perovskite solar cellbased on Sncouldbe an alternative solution for commercialisation. This paperpresents the results of a theoretical study of a lead-free, environmentally-friendlyphotovoltaic cellusing СH3NH3SnI3as a light-absorbing layer. The characteristics of a photovoltaic cell based on perovskite were modelled using the SCAPS-1D program. Various thicknesses of the absorbing layer were analysed,and an optimised device structure is proposed,demonstratinga high power conversionefficiencyof up to 28% at ambient temperature. The analysis of the thicknesses of the СH3NH3SnI3absorbing layer revealedthat at a thickness of 500 nm, performance is demonstrated with an efficiencyof 27.41 %, a fill factor of 85.92 %, a short circuit current density of 32.60 mA/cm2and an open-circuit voltage of 0.98 V. The obtained numerical results indicate that the СH3NH3SnI3absorbing layer may be a viable replacement forthe standard materials and may form the basis of a highly efficient technology of the environmentally-friendlyperovskite solar cells.","PeriodicalId":11789,"journal":{"name":"Eurasian Physical Technical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PERFORMANCE SIMULATION OF ECO-FRIENDLY SOLAR CELLS BASED ONCH3NH3SnI3\",\"authors\":\"Z. Omarova\",\"doi\":\"10.31489/2022no2/58-64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale deployment of the perovskite photovoltaic technology using such high-performance materials as СH3NH3PbI3may face serious environmental issuesin the future. Implementation of perovskite solar cellbased on Sncouldbe an alternative solution for commercialisation. This paperpresents the results of a theoretical study of a lead-free, environmentally-friendlyphotovoltaic cellusing СH3NH3SnI3as a light-absorbing layer. The characteristics of a photovoltaic cell based on perovskite were modelled using the SCAPS-1D program. Various thicknesses of the absorbing layer were analysed,and an optimised device structure is proposed,demonstratinga high power conversionefficiencyof up to 28% at ambient temperature. The analysis of the thicknesses of the СH3NH3SnI3absorbing layer revealedthat at a thickness of 500 nm, performance is demonstrated with an efficiencyof 27.41 %, a fill factor of 85.92 %, a short circuit current density of 32.60 mA/cm2and an open-circuit voltage of 0.98 V. The obtained numerical results indicate that the СH3NH3SnI3absorbing layer may be a viable replacement forthe standard materials and may form the basis of a highly efficient technology of the environmentally-friendlyperovskite solar cells.\",\"PeriodicalId\":11789,\"journal\":{\"name\":\"Eurasian Physical Technical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Physical Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022no2/58-64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Physical Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022no2/58-64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
PERFORMANCE SIMULATION OF ECO-FRIENDLY SOLAR CELLS BASED ONCH3NH3SnI3
Large-scale deployment of the perovskite photovoltaic technology using such high-performance materials as СH3NH3PbI3may face serious environmental issuesin the future. Implementation of perovskite solar cellbased on Sncouldbe an alternative solution for commercialisation. This paperpresents the results of a theoretical study of a lead-free, environmentally-friendlyphotovoltaic cellusing СH3NH3SnI3as a light-absorbing layer. The characteristics of a photovoltaic cell based on perovskite were modelled using the SCAPS-1D program. Various thicknesses of the absorbing layer were analysed,and an optimised device structure is proposed,demonstratinga high power conversionefficiencyof up to 28% at ambient temperature. The analysis of the thicknesses of the СH3NH3SnI3absorbing layer revealedthat at a thickness of 500 nm, performance is demonstrated with an efficiencyof 27.41 %, a fill factor of 85.92 %, a short circuit current density of 32.60 mA/cm2and an open-circuit voltage of 0.98 V. The obtained numerical results indicate that the СH3NH3SnI3absorbing layer may be a viable replacement forthe standard materials and may form the basis of a highly efficient technology of the environmentally-friendlyperovskite solar cells.