商用碳纸负载纳米镍作为尿素电氧化催化剂

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2020-09-08 DOI:10.1007/s40243-020-00180-8
Izabella F. Coelho, Joseane R. Barbosa, Liying Liu, Cauê de S. C. Nogueira, Dante F. Franceschini, Eduardo A. Ponzio, Júlio César M. Silva, Yutao Xing
{"title":"商用碳纸负载纳米镍作为尿素电氧化催化剂","authors":"Izabella F. Coelho,&nbsp;Joseane R. Barbosa,&nbsp;Liying Liu,&nbsp;Cauê de S. C. Nogueira,&nbsp;Dante F. Franceschini,&nbsp;Eduardo A. Ponzio,&nbsp;Júlio César M. Silva,&nbsp;Yutao Xing","doi":"10.1007/s40243-020-00180-8","DOIUrl":null,"url":null,"abstract":"<p>Nickel nanoparticles supported by commercial carbon paper (CP) are prepared by pulsed laser deposition with deposition time of 3, 6, and 12?min as a catalyst for urea electro-oxidation. The surface conditions and the morphologies of the prepared electrodes have been characterized by Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. Urea electro-oxidation reaction in KOH solution on the Ni/CP electrodes is investigated by cyclic voltammetry and chronoamperometry. The results show that the electrode with less Ni nanoparticle agglomeration shows higher peak current density, which was achieved in the 3?min deposition samples when normalized by electroactive surface areas. However, the highest current normalized by the area of the carbon paper was achieved in the 6?min deposition sample due to the larger quantity of Ni nanoparticles. All the samples show good stability. Our results suggest that the low density, low cost, and environmental friendly CP can be used as support for Ni nanoparticle as a catalyst for urea electro-oxidation. It thus has great potential for many applications involving urea oxidation, such as wastewater treatments.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-020-00180-8","citationCount":"6","resultStr":"{\"title\":\"Nickel nanoparticles supported by commercial carbon paper as a catalyst for urea electro-oxidation\",\"authors\":\"Izabella F. Coelho,&nbsp;Joseane R. Barbosa,&nbsp;Liying Liu,&nbsp;Cauê de S. C. Nogueira,&nbsp;Dante F. Franceschini,&nbsp;Eduardo A. Ponzio,&nbsp;Júlio César M. Silva,&nbsp;Yutao Xing\",\"doi\":\"10.1007/s40243-020-00180-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nickel nanoparticles supported by commercial carbon paper (CP) are prepared by pulsed laser deposition with deposition time of 3, 6, and 12?min as a catalyst for urea electro-oxidation. The surface conditions and the morphologies of the prepared electrodes have been characterized by Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. Urea electro-oxidation reaction in KOH solution on the Ni/CP electrodes is investigated by cyclic voltammetry and chronoamperometry. The results show that the electrode with less Ni nanoparticle agglomeration shows higher peak current density, which was achieved in the 3?min deposition samples when normalized by electroactive surface areas. However, the highest current normalized by the area of the carbon paper was achieved in the 6?min deposition sample due to the larger quantity of Ni nanoparticles. All the samples show good stability. Our results suggest that the low density, low cost, and environmental friendly CP can be used as support for Ni nanoparticle as a catalyst for urea electro-oxidation. It thus has great potential for many applications involving urea oxidation, such as wastewater treatments.</p>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2020-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40243-020-00180-8\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-020-00180-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-020-00180-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

采用脉冲激光沉积法制备了以商用碳纸(CP)为载体的镍纳米颗粒,沉积时间分别为3、6和12?作为尿素电氧化的催化剂。用拉曼光谱、扫描电子显微镜和透射电子显微镜对电极的表面条件和形貌进行了表征。采用循环伏安法和计时电流法研究了KOH溶液中尿素在Ni/CP电极上的电氧化反应。结果表明,Ni纳米颗粒团聚较少的电极具有更高的峰值电流密度,这在3?当电活性表面积归一化时,最小沉积样品。然而,按碳纸面积归一化的最大电流在6?由于Ni纳米颗粒的数量较多,沉积样品最小。所有样品均表现出良好的稳定性。研究结果表明,低密度、低成本、环境友好的CP可作为Ni纳米颗粒作为尿素电氧化催化剂的载体。因此,它在涉及尿素氧化的许多应用中具有很大的潜力,例如废水处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nickel nanoparticles supported by commercial carbon paper as a catalyst for urea electro-oxidation

Nickel nanoparticles supported by commercial carbon paper (CP) are prepared by pulsed laser deposition with deposition time of 3, 6, and 12?min as a catalyst for urea electro-oxidation. The surface conditions and the morphologies of the prepared electrodes have been characterized by Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. Urea electro-oxidation reaction in KOH solution on the Ni/CP electrodes is investigated by cyclic voltammetry and chronoamperometry. The results show that the electrode with less Ni nanoparticle agglomeration shows higher peak current density, which was achieved in the 3?min deposition samples when normalized by electroactive surface areas. However, the highest current normalized by the area of the carbon paper was achieved in the 6?min deposition sample due to the larger quantity of Ni nanoparticles. All the samples show good stability. Our results suggest that the low density, low cost, and environmental friendly CP can be used as support for Ni nanoparticle as a catalyst for urea electro-oxidation. It thus has great potential for many applications involving urea oxidation, such as wastewater treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Performance of high sulfonated poly(ether ether ketone) improved with microcrystalline cellulose and 2,3-dialdehyde cellulose for proton exchange membranes Effect of scandium concentration on the performances of cantilever based AlN unimorph piezoelectric energy harvester with silicon nitride substrate Enhanced electrochemical validation of metal organic frameworks-derived TiO2/Fe-TiO2 as an active electrode for supercapacitors The photothermal properties of hydrogel nanocomposite embedded with ZnO/CuO based on PVA/GA/activated carbon for solar-driven interfacial evaporation Formulation and development of composite materials for thermally driven and storage-integrated cooling technologies: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1