Hamed Daneshian, S. Nayebzadeh, Abolfazl Davodiroknabadi
{"title":"纳米GEO2掺杂材料对粘胶物理性能的改善","authors":"Hamed Daneshian, S. Nayebzadeh, Abolfazl Davodiroknabadi","doi":"10.2478/aut-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract The properties of viscose\\TiO2 and viscose\\TiO2\\germanium dioxide (GeO2) are investigated and compared. The elemental mapping analysis using a field emission scanning electron microscope (FESEM) shows the excellent distribution of nanomaterials, while the energy dispersive X-ray (EDX) confirms its existence. The 500 s cycle of rubbing test indicates that the abrasion resistance of treated samples improves significantly. In addition, the doping of nano GeO2 enhances the strength of the treated samples. Furthermore, the thermal behavior of the treated samples, characterized by differential scanning calorimeter (DSC), results in a higher crystallization temperature and doping GeO2 increases the thermal properties of viscose in comparison with nano TiO2. The study of ultraviolet blocking indicates that doping GeO2 can improve the transmission of ultraviolet even from TiO2.","PeriodicalId":49104,"journal":{"name":"Autex Research Journal","volume":"22 1","pages":"243 - 247"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improvement of Physical Properties of Viscose using Nano GEO2 as Doping Material\",\"authors\":\"Hamed Daneshian, S. Nayebzadeh, Abolfazl Davodiroknabadi\",\"doi\":\"10.2478/aut-2021-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The properties of viscose\\\\TiO2 and viscose\\\\TiO2\\\\germanium dioxide (GeO2) are investigated and compared. The elemental mapping analysis using a field emission scanning electron microscope (FESEM) shows the excellent distribution of nanomaterials, while the energy dispersive X-ray (EDX) confirms its existence. The 500 s cycle of rubbing test indicates that the abrasion resistance of treated samples improves significantly. In addition, the doping of nano GeO2 enhances the strength of the treated samples. Furthermore, the thermal behavior of the treated samples, characterized by differential scanning calorimeter (DSC), results in a higher crystallization temperature and doping GeO2 increases the thermal properties of viscose in comparison with nano TiO2. The study of ultraviolet blocking indicates that doping GeO2 can improve the transmission of ultraviolet even from TiO2.\",\"PeriodicalId\":49104,\"journal\":{\"name\":\"Autex Research Journal\",\"volume\":\"22 1\",\"pages\":\"243 - 247\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autex Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2478/aut-2021-0002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autex Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/aut-2021-0002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Improvement of Physical Properties of Viscose using Nano GEO2 as Doping Material
Abstract The properties of viscose\TiO2 and viscose\TiO2\germanium dioxide (GeO2) are investigated and compared. The elemental mapping analysis using a field emission scanning electron microscope (FESEM) shows the excellent distribution of nanomaterials, while the energy dispersive X-ray (EDX) confirms its existence. The 500 s cycle of rubbing test indicates that the abrasion resistance of treated samples improves significantly. In addition, the doping of nano GeO2 enhances the strength of the treated samples. Furthermore, the thermal behavior of the treated samples, characterized by differential scanning calorimeter (DSC), results in a higher crystallization temperature and doping GeO2 increases the thermal properties of viscose in comparison with nano TiO2. The study of ultraviolet blocking indicates that doping GeO2 can improve the transmission of ultraviolet even from TiO2.
期刊介绍:
Only few journals deal with textile research at an international and global level complying with the highest standards.
Autex Research Journal has the aim to play a leading role in distributing scientific and technological research results on textiles publishing original and innovative papers after peer reviewing, guaranteeing quality and excellence.
Everybody dedicated to textiles and textile related materials is invited to submit papers and to contribute to a positive and appealing image of this Journal.