{"title":"EGMM视频监控用于监控城市交通场景","authors":"A. Reyana, S. Kautish, A. S. Vibith, S. Goyal","doi":"10.1108/ijius-07-2021-0061","DOIUrl":null,"url":null,"abstract":"PurposeIn the traffic monitoring system, the detection of stirring vehicles is monitored by fitting static cameras in the traffic scenarios. Background subtraction a commonly used method detaches poignant objects in the foreground from the background. The method applies a Gaussian Mixture Model, which can effortlessly be contaminated through slow-moving or momentarily stopped vehicles.Design/methodology/approachThis paper proposes the Enhanced Gaussian Mixture Model to overcome the addressed issue, efficiently detecting vehicles in complex traffic scenarios.FindingsThe model was evaluated with experiments conducted using real-world on-road travel videos. The evidence intimates that the proposed model excels with other approaches showing the accuracy of 0.9759 when compared with the existing Gaussian mixture model (GMM) model and avoids contamination of slow-moving or momentarily stopped vehicles.Originality/valueThe proposed method effectively combines, tracks and classifies the traffic vehicles, resolving the contamination problem that occurred by slow-moving or momentarily stopped vehicles.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EGMM video surveillance for monitoring urban traffic scenario\",\"authors\":\"A. Reyana, S. Kautish, A. S. Vibith, S. Goyal\",\"doi\":\"10.1108/ijius-07-2021-0061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeIn the traffic monitoring system, the detection of stirring vehicles is monitored by fitting static cameras in the traffic scenarios. Background subtraction a commonly used method detaches poignant objects in the foreground from the background. The method applies a Gaussian Mixture Model, which can effortlessly be contaminated through slow-moving or momentarily stopped vehicles.Design/methodology/approachThis paper proposes the Enhanced Gaussian Mixture Model to overcome the addressed issue, efficiently detecting vehicles in complex traffic scenarios.FindingsThe model was evaluated with experiments conducted using real-world on-road travel videos. The evidence intimates that the proposed model excels with other approaches showing the accuracy of 0.9759 when compared with the existing Gaussian mixture model (GMM) model and avoids contamination of slow-moving or momentarily stopped vehicles.Originality/valueThe proposed method effectively combines, tracks and classifies the traffic vehicles, resolving the contamination problem that occurred by slow-moving or momentarily stopped vehicles.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-07-2021-0061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-07-2021-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
EGMM video surveillance for monitoring urban traffic scenario
PurposeIn the traffic monitoring system, the detection of stirring vehicles is monitored by fitting static cameras in the traffic scenarios. Background subtraction a commonly used method detaches poignant objects in the foreground from the background. The method applies a Gaussian Mixture Model, which can effortlessly be contaminated through slow-moving or momentarily stopped vehicles.Design/methodology/approachThis paper proposes the Enhanced Gaussian Mixture Model to overcome the addressed issue, efficiently detecting vehicles in complex traffic scenarios.FindingsThe model was evaluated with experiments conducted using real-world on-road travel videos. The evidence intimates that the proposed model excels with other approaches showing the accuracy of 0.9759 when compared with the existing Gaussian mixture model (GMM) model and avoids contamination of slow-moving or momentarily stopped vehicles.Originality/valueThe proposed method effectively combines, tracks and classifies the traffic vehicles, resolving the contamination problem that occurred by slow-moving or momentarily stopped vehicles.