用自监督学习和好奇心处理多智能体系统中的真实噪声

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence and Soft Computing Research Pub Date : 2021-04-01 DOI:10.2478/jaiscr-2022-0009
Marton Szemenyei, Patrik Reizinger
{"title":"用自监督学习和好奇心处理多智能体系统中的真实噪声","authors":"Marton Szemenyei, Patrik Reizinger","doi":"10.2478/jaiscr-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract 1Most reinforcement learning benchmarks – especially in multi-agent tasks – do not go beyond observations with simple noise; nonetheless, real scenarios induce more elaborate vision pipeline failures: false sightings, misclassifications or occlusion. In this work, we propose a lightweight, 2D environment for robot soccer and autonomous driving that can emulate the above discrepancies. Besides establishing a benchmark for accessible multi-agent reinforcement learning research, our work addresses the challenges the simulator imposes. For handling realistic noise, we use self-supervised learning to enhance scene reconstruction and extend curiosity-driven learning to model longer horizons. Our extensive experiments show that the proposed methods achieve state-of-the-art performance, compared against actor-critic methods, ICM, and PPO.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"12 1","pages":"135 - 148"},"PeriodicalIF":3.3000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Handling Realistic Noise in Multi-Agent Systems with Self-Supervised Learning and Curiosity\",\"authors\":\"Marton Szemenyei, Patrik Reizinger\",\"doi\":\"10.2478/jaiscr-2022-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract 1Most reinforcement learning benchmarks – especially in multi-agent tasks – do not go beyond observations with simple noise; nonetheless, real scenarios induce more elaborate vision pipeline failures: false sightings, misclassifications or occlusion. In this work, we propose a lightweight, 2D environment for robot soccer and autonomous driving that can emulate the above discrepancies. Besides establishing a benchmark for accessible multi-agent reinforcement learning research, our work addresses the challenges the simulator imposes. For handling realistic noise, we use self-supervised learning to enhance scene reconstruction and extend curiosity-driven learning to model longer horizons. Our extensive experiments show that the proposed methods achieve state-of-the-art performance, compared against actor-critic methods, ICM, and PPO.\",\"PeriodicalId\":48494,\"journal\":{\"name\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"volume\":\"12 1\",\"pages\":\"135 - 148\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence and Soft Computing Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2478/jaiscr-2022-0009\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2022-0009","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要1大多数强化学习基准——尤其是在多智能体任务中——不会超出简单噪声的观察范围;尽管如此,真实的场景会引发更复杂的视觉管道故障:虚假视觉、错误分类或遮挡。在这项工作中,我们为机器人足球和自动驾驶提出了一个轻量级的2D环境,可以模拟上述差异。除了为可访问的多智能体强化学习研究建立基准外,我们的工作还解决了模拟器带来的挑战。为了处理逼真的噪声,我们使用自监督学习来增强场景重建,并将好奇心驱动的学习扩展到建模更长的视野。我们的大量实验表明,与演员-评论家方法、ICM和PPO相比,所提出的方法实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Handling Realistic Noise in Multi-Agent Systems with Self-Supervised Learning and Curiosity
Abstract 1Most reinforcement learning benchmarks – especially in multi-agent tasks – do not go beyond observations with simple noise; nonetheless, real scenarios induce more elaborate vision pipeline failures: false sightings, misclassifications or occlusion. In this work, we propose a lightweight, 2D environment for robot soccer and autonomous driving that can emulate the above discrepancies. Besides establishing a benchmark for accessible multi-agent reinforcement learning research, our work addresses the challenges the simulator imposes. For handling realistic noise, we use self-supervised learning to enhance scene reconstruction and extend curiosity-driven learning to model longer horizons. Our extensive experiments show that the proposed methods achieve state-of-the-art performance, compared against actor-critic methods, ICM, and PPO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Artificial Intelligence and Soft Computing Research
Journal of Artificial Intelligence and Soft Computing Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.00
自引率
25.00%
发文量
10
审稿时长
24 weeks
期刊介绍: Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.
期刊最新文献
Bending Path Understanding Based on Angle Projections in Field Environments Self-Organized Operational Neural Networks for The Detection of Atrial Fibrillation Interpreting Convolutional Layers in DNN Model Based on Time–Frequency Representation of Emotional Speech A Few-Shot Learning Approach for Covid-19 Diagnosis Using Quasi-Configured Topological Spaces Metrics for Assessing Generalization of Deep Reinforcement Learning in Parameterized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1