{"title":"深海拖网渔船海试动力响应研究","authors":"Qing-feng Xu, Yonghe Xie, Haofeng Cai, Xiwu Gong, Detang Li, W. Wang, Panpan Jia","doi":"10.2478/pomr-2023-0003","DOIUrl":null,"url":null,"abstract":"Abstract The increasing use of automation in fishing vessels has improved trawling efficiency while directly affecting the fishing capacity and cost of fishing vessels. Among the various influencing factors, warp tension and warp length can be varied to automatically balance the retraction and release of warp control. We combined the two parameters and independently designed and developed the key equipment for fishing vessels—the warp dynamometer and meter counter—and control software. The accuracy of the warp tension and length measurements was improved. The designed equipment was applied to sea trials under different working conditions, and the test data records were exported. Next, filtered time-domain graphs of the required parameters were plotted through complex Fourier transform, first-order low-pass filtering, and inverse Fourier transform. The results of data processing using various parameters were compared and analysed to determine the variation trends of the parameters and verify the effects of their balance control. The results indicated that using an automatic balance control system that combines warp tension and warp length can be effective for the fishing operation of offshore double-deck trawlers. In addition, first-order low-pass filtering can be used to filter complex warp tension data. This study also determined the relationship between warp tension and experimental parameters such as warp length and ship speed during the release of control. After the balance control of warp tension and warp length, the net mouth area increased by 30.7% and 36.5%, respectively, and the fishing efficiency of the vessel improved considerably.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Dynamic Response of Deep-Sea Trawlers in Sea Trials\",\"authors\":\"Qing-feng Xu, Yonghe Xie, Haofeng Cai, Xiwu Gong, Detang Li, W. Wang, Panpan Jia\",\"doi\":\"10.2478/pomr-2023-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The increasing use of automation in fishing vessels has improved trawling efficiency while directly affecting the fishing capacity and cost of fishing vessels. Among the various influencing factors, warp tension and warp length can be varied to automatically balance the retraction and release of warp control. We combined the two parameters and independently designed and developed the key equipment for fishing vessels—the warp dynamometer and meter counter—and control software. The accuracy of the warp tension and length measurements was improved. The designed equipment was applied to sea trials under different working conditions, and the test data records were exported. Next, filtered time-domain graphs of the required parameters were plotted through complex Fourier transform, first-order low-pass filtering, and inverse Fourier transform. The results of data processing using various parameters were compared and analysed to determine the variation trends of the parameters and verify the effects of their balance control. The results indicated that using an automatic balance control system that combines warp tension and warp length can be effective for the fishing operation of offshore double-deck trawlers. In addition, first-order low-pass filtering can be used to filter complex warp tension data. This study also determined the relationship between warp tension and experimental parameters such as warp length and ship speed during the release of control. After the balance control of warp tension and warp length, the net mouth area increased by 30.7% and 36.5%, respectively, and the fishing efficiency of the vessel improved considerably.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2023-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Study on the Dynamic Response of Deep-Sea Trawlers in Sea Trials
Abstract The increasing use of automation in fishing vessels has improved trawling efficiency while directly affecting the fishing capacity and cost of fishing vessels. Among the various influencing factors, warp tension and warp length can be varied to automatically balance the retraction and release of warp control. We combined the two parameters and independently designed and developed the key equipment for fishing vessels—the warp dynamometer and meter counter—and control software. The accuracy of the warp tension and length measurements was improved. The designed equipment was applied to sea trials under different working conditions, and the test data records were exported. Next, filtered time-domain graphs of the required parameters were plotted through complex Fourier transform, first-order low-pass filtering, and inverse Fourier transform. The results of data processing using various parameters were compared and analysed to determine the variation trends of the parameters and verify the effects of their balance control. The results indicated that using an automatic balance control system that combines warp tension and warp length can be effective for the fishing operation of offshore double-deck trawlers. In addition, first-order low-pass filtering can be used to filter complex warp tension data. This study also determined the relationship between warp tension and experimental parameters such as warp length and ship speed during the release of control. After the balance control of warp tension and warp length, the net mouth area increased by 30.7% and 36.5%, respectively, and the fishing efficiency of the vessel improved considerably.