利用与城乡地面观测相关的卫星资料反演气溶胶光学深度

Q4 Earth and Planetary Sciences Kartografija i Geoinformacije Pub Date : 2020-01-15 DOI:10.32909/kg.18.32.1
Le Le, Lin Tang-Huang, C. Le, Lan Thi Pham, Ha Thi Thu Le, Long Quoc Nguyen, Nghia Viet Nguyen, Cuong Xuan Cao
{"title":"利用与城乡地面观测相关的卫星资料反演气溶胶光学深度","authors":"Le Le, Lin Tang-Huang, C. Le, Lan Thi Pham, Ha Thi Thu Le, Long Quoc Nguyen, Nghia Viet Nguyen, Cuong Xuan Cao","doi":"10.32909/kg.18.32.1","DOIUrl":null,"url":null,"abstract":"Aerosol optical depth (AOD) can be retrieved accurately with sequential ground-based measurements of direct and diffuse solar radiance. However, spatial coverage and location frequency cause certain limitations. Hence, satellite image data are a proper tool for obtaining aerosol optical depth products with more spatial information and patterns of aerosol distribution. Currently, aerosol remote sensing may enhance our understanding of the optimal approach to AOD retrieval over urban and rural areas, and how it differs due to the characteristics of surface reflectivity. The article deals with the concepts of contrast reduction, and dark target approaches are examined using Landsat imaging and the observation of a sun photometer for integrating aerosol optical depth distribution over the city of Taipei in Taiwan. For areas with bright surfaces, such as urban areas, the above concepts were applied using the dispersion coefficient method with a sun photometer, in order to reduce errors considerably in the product. In contrast, a dark target algorithm with a relationship of surface reflectance between the blue (0.49 μm), red (0.66 μm), and infrared (2.1 μm) spectral bands is suitable for moist soils and vegetation areas. The retrieval of AOD spatial distribution is compared with MODIS AOD products and AERONET to verify the accuracy of the results. The RMSE ranged from 0.2 to 0.4, and about 50% of the data were within expected error margins (EE=± (0.05+0.15 AODsunphotometer).","PeriodicalId":35029,"journal":{"name":"Kartografija i Geoinformacije","volume":"18 1","pages":"4-17"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrieval of Aerosol Optical Depth Using Satellite Data Associated with Ground-based Observations over Urban and Rural Areas\",\"authors\":\"Le Le, Lin Tang-Huang, C. Le, Lan Thi Pham, Ha Thi Thu Le, Long Quoc Nguyen, Nghia Viet Nguyen, Cuong Xuan Cao\",\"doi\":\"10.32909/kg.18.32.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerosol optical depth (AOD) can be retrieved accurately with sequential ground-based measurements of direct and diffuse solar radiance. However, spatial coverage and location frequency cause certain limitations. Hence, satellite image data are a proper tool for obtaining aerosol optical depth products with more spatial information and patterns of aerosol distribution. Currently, aerosol remote sensing may enhance our understanding of the optimal approach to AOD retrieval over urban and rural areas, and how it differs due to the characteristics of surface reflectivity. The article deals with the concepts of contrast reduction, and dark target approaches are examined using Landsat imaging and the observation of a sun photometer for integrating aerosol optical depth distribution over the city of Taipei in Taiwan. For areas with bright surfaces, such as urban areas, the above concepts were applied using the dispersion coefficient method with a sun photometer, in order to reduce errors considerably in the product. In contrast, a dark target algorithm with a relationship of surface reflectance between the blue (0.49 μm), red (0.66 μm), and infrared (2.1 μm) spectral bands is suitable for moist soils and vegetation areas. The retrieval of AOD spatial distribution is compared with MODIS AOD products and AERONET to verify the accuracy of the results. The RMSE ranged from 0.2 to 0.4, and about 50% of the data were within expected error margins (EE=± (0.05+0.15 AODsunphotometer).\",\"PeriodicalId\":35029,\"journal\":{\"name\":\"Kartografija i Geoinformacije\",\"volume\":\"18 1\",\"pages\":\"4-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kartografija i Geoinformacije\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32909/kg.18.32.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kartografija i Geoinformacije","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32909/kg.18.32.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

气溶胶光学深度(AOD)可以通过直接和散射太阳辐射的连续地面测量来精确检索。然而,空间覆盖率和位置频率造成了一定的局限性。因此,卫星图像数据是获得具有更多空间信息和气溶胶分布模式的气溶胶光学深度产品的合适工具。目前,气溶胶遥感可以增强我们对城市和农村地区AOD反演的最佳方法的理解,以及它如何因表面反射率的特征而有所不同。本文介绍了对比度降低的概念,并利用陆地卫星成像和太阳光度计观测台湾台北市上空气溶胶光学深度分布,对暗目标方法进行了研究。对于具有明亮表面的区域,如城市区域,使用太阳光度计的散射系数方法应用上述概念,以显著减少产品中的误差。相反,具有蓝色(0.49μm)、红色(0.66μm)和红外(2.1μm)光谱带之间的表面反射率关系的暗目标算法适用于潮湿的土壤和植被区域。将AOD空间分布的检索与MODIS AOD产品和AERONET进行了比较,验证了结果的准确性。RMSE在0.2至0.4之间,约50%的数据在预期误差范围内(EE=±(0.05+0.15 AOD散光度计)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retrieval of Aerosol Optical Depth Using Satellite Data Associated with Ground-based Observations over Urban and Rural Areas
Aerosol optical depth (AOD) can be retrieved accurately with sequential ground-based measurements of direct and diffuse solar radiance. However, spatial coverage and location frequency cause certain limitations. Hence, satellite image data are a proper tool for obtaining aerosol optical depth products with more spatial information and patterns of aerosol distribution. Currently, aerosol remote sensing may enhance our understanding of the optimal approach to AOD retrieval over urban and rural areas, and how it differs due to the characteristics of surface reflectivity. The article deals with the concepts of contrast reduction, and dark target approaches are examined using Landsat imaging and the observation of a sun photometer for integrating aerosol optical depth distribution over the city of Taipei in Taiwan. For areas with bright surfaces, such as urban areas, the above concepts were applied using the dispersion coefficient method with a sun photometer, in order to reduce errors considerably in the product. In contrast, a dark target algorithm with a relationship of surface reflectance between the blue (0.49 μm), red (0.66 μm), and infrared (2.1 μm) spectral bands is suitable for moist soils and vegetation areas. The retrieval of AOD spatial distribution is compared with MODIS AOD products and AERONET to verify the accuracy of the results. The RMSE ranged from 0.2 to 0.4, and about 50% of the data were within expected error margins (EE=± (0.05+0.15 AODsunphotometer).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kartografija i Geoinformacije
Kartografija i Geoinformacije Earth and Planetary Sciences-Geophysics
CiteScore
0.70
自引率
0.00%
发文量
6
审稿时长
12 weeks
期刊最新文献
Primjena analize prostorne mrežne u prometnim nesrećama na temelju otvorenih podataka Kartografija u Hrvatskoj 2019–2023, Nacionalni izvještaj na 19. generalnoj skupštini ICA-e Who is the author of the Apian map projections? Razvoj konceptualnog modela geoinformacijskog sustava prometnih nesreća Cylindrical Projections as a Limiting Case of Conic Projections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1