人参皂苷Rg5通过p38MAPK和Akt/mTOR信号通路促进肌肉再生

IF 6.8 2区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Ginseng Research Pub Date : 2023-11-01 DOI:10.1016/j.jgr.2023.06.004
Ryuni Kim , Jee Won Kim , Hyerim Choi , Ji-Eun Oh , Tae Hyun Kim , Ga-Yeon Go , Sang-Jin Lee , Gyu-Un Bae
{"title":"人参皂苷Rg5通过p38MAPK和Akt/mTOR信号通路促进肌肉再生","authors":"Ryuni Kim ,&nbsp;Jee Won Kim ,&nbsp;Hyerim Choi ,&nbsp;Ji-Eun Oh ,&nbsp;Tae Hyun Kim ,&nbsp;Ga-Yeon Go ,&nbsp;Sang-Jin Lee ,&nbsp;Gyu-Un Bae","doi":"10.1016/j.jgr.2023.06.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce.</p></div><div><h3>Methods</h3><p>To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A <em>via</em> p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1).</p></div><div><h3>Results</h3><p>Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy <em>via</em> phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1.</p></div><div><h3>Conclusion</h3><p>This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226845323000702/pdfft?md5=30085717af922d3493fa7dc43b2388fa&pid=1-s2.0-S1226845323000702-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling\",\"authors\":\"Ryuni Kim ,&nbsp;Jee Won Kim ,&nbsp;Hyerim Choi ,&nbsp;Ji-Eun Oh ,&nbsp;Tae Hyun Kim ,&nbsp;Ga-Yeon Go ,&nbsp;Sang-Jin Lee ,&nbsp;Gyu-Un Bae\",\"doi\":\"10.1016/j.jgr.2023.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce.</p></div><div><h3>Methods</h3><p>To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A <em>via</em> p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1).</p></div><div><h3>Results</h3><p>Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy <em>via</em> phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1.</p></div><div><h3>Conclusion</h3><p>This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.</p></div>\",\"PeriodicalId\":16035,\"journal\":{\"name\":\"Journal of Ginseng Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1226845323000702/pdfft?md5=30085717af922d3493fa7dc43b2388fa&pid=1-s2.0-S1226845323000702-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ginseng Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1226845323000702\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226845323000702","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌在身体活动和能量代谢中起着关键作用。骨骼肌质量的减少会导致新陈代谢和身体活动方面的问题。目前正在进行研究,通过增加肌肉的质量和再生能力来预防这些疾病。据报道,人参皂苷Rg5具有广泛的药理活性。然而,关于Rg5对肌肉分化和生长影响的研究很少。方法采用诱导C2C12成肌细胞向Rg5分化,免疫印迹、免疫染色和qRT-PCR检测成肌标志物和前肌生成信号(p38MAPK),研究Rg5对成肌的影响。免疫沉淀证实Rg5通过p38MAPK增加了MyoD和E2A之间的相互作用。采用地塞米松诱导C2C12肌管肌萎缩的方法,探讨Rg5对肌质量损失的预防作用。对肌源性标志物、Akt/mTOR蛋白合成信号通路和萎缩相关基因(atrogin1和MuRF1)进行免疫印迹、免疫染色和qRT-PCR检测。结果rg5通过磷酸化p38MAPK和MyoD/E2A异源二聚化促进C2C12成肌细胞分化。此外,Rg5通过磷酸化Akt/mTOR刺激C2C12肌管肥大。Akt磷酸化诱导FoxO3a磷酸化,从而降低Atrogin-1和MuRF1的表达。结论Rg5促进肌肉发生和肥厚,预防地塞米松诱导的肌肉萎缩。据我们所知,这项研究首次表明Rg5促进肌肉再生,并表明Rg5可用于肌肉无力和萎缩的治疗干预,包括癌症恶病质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling

Background

Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce.

Methods

To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1).

Results

Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1.

Conclusion

This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ginseng Research
Journal of Ginseng Research CHEMISTRY, MEDICINAL-INTEGRATIVE & COMPLEMENTARY MEDICINE
CiteScore
11.40
自引率
9.50%
发文量
111
审稿时长
6-12 weeks
期刊介绍: Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research. JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports. JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.
期刊最新文献
Corrigendum to “Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-kB, p38, and JNK MAPK pathways” [J Ginseng Res 43 (2019) 95–104] Panax notoginseng saponins promotes angiogenesis after cerebral ischemia-reperfusion injury Ethanol extract of lymphanax with gypenoside 17 and ginsenoside Re exerts anti-inflammatory properties by targeting the AKT/NF-κB pathway Enhancement of skin regeneration through activation of TGF-β/SMAD signaling pathway by Panax ginseng meyer non-edible callus-derived extracellular vesicles Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1