生物活性和生物惰性陶瓷粉末对PMMA复合义齿基托摩擦学性能的影响

IF 0.5 Q4 ENGINEERING, BIOMEDICAL Journal of Biomimetics, Biomaterials and Biomedical Engineering Pub Date : 2022-07-22 DOI:10.4028/p-3f74k7
Shahad Hussain, A. Al-Sarraf
{"title":"生物活性和生物惰性陶瓷粉末对PMMA复合义齿基托摩擦学性能的影响","authors":"Shahad Hussain, A. Al-Sarraf","doi":"10.4028/p-3f74k7","DOIUrl":null,"url":null,"abstract":"Polymer matrix composites are suitable materials for medical applications, such as denture base resin polymethyl methacrylate (PMMA). This includes light weight and high strength. This paper describes the effect of selected weight fractions (1, 2, 3, 4 & 5) % wt of nano(Alumina AL2O3, Zirconia ZrO2, Hydroxyapatite HA and Halloysite nanoClay) reinforcements on the biopolymer matrix (PMMA). Some tribology tests were used to evaluate the prepared system (impact strength, hardness surface, and wear rate) tests. The samples were fabricated by (Hand Lay-Up) with different particle reinforcement percentages. All tests were accomplished at room temperature, and samples were developed according to the ASTM standard. The weight fraction of (4% for AL2O3, 4% for ZrO2, 3% for HA and 5% for Clay) nanoparticles are the best results that appeared in the work.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":"57 1","pages":"1 - 8"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Bioactive and Bio Inert Ceramic Powders on Tribology Properties of PMMA Composite Denture Base\",\"authors\":\"Shahad Hussain, A. Al-Sarraf\",\"doi\":\"10.4028/p-3f74k7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polymer matrix composites are suitable materials for medical applications, such as denture base resin polymethyl methacrylate (PMMA). This includes light weight and high strength. This paper describes the effect of selected weight fractions (1, 2, 3, 4 & 5) % wt of nano(Alumina AL2O3, Zirconia ZrO2, Hydroxyapatite HA and Halloysite nanoClay) reinforcements on the biopolymer matrix (PMMA). Some tribology tests were used to evaluate the prepared system (impact strength, hardness surface, and wear rate) tests. The samples were fabricated by (Hand Lay-Up) with different particle reinforcement percentages. All tests were accomplished at room temperature, and samples were developed according to the ASTM standard. The weight fraction of (4% for AL2O3, 4% for ZrO2, 3% for HA and 5% for Clay) nanoparticles are the best results that appeared in the work.\",\"PeriodicalId\":15161,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"volume\":\"57 1\",\"pages\":\"1 - 8\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-3f74k7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-3f74k7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

摘要

聚合物基复合材料是适用于医疗应用的材料,例如义齿基托树脂聚甲基丙烯酸甲酯(PMMA)。这包括重量轻和强度高。本文描述了选定重量分数(1、2、3、4和5)%wt的纳米(氧化铝AL2O3、氧化锆ZrO2、羟基磷灰石HA和Halloysite纳米粘土)增强体对生物聚合物基体(PMMA)的影响。一些摩擦学测试用于评估所制备的系统(冲击强度、表面硬度和磨损率)测试。样品通过(手工铺贴)制造,具有不同的颗粒增强百分比。所有测试都是在室温下完成的,样品是根据ASTM标准开发的。纳米颗粒的重量分数(AL2O3为4%,ZrO2为4%,HA为3%,粘土为5%)是工作中出现的最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Bioactive and Bio Inert Ceramic Powders on Tribology Properties of PMMA Composite Denture Base
Polymer matrix composites are suitable materials for medical applications, such as denture base resin polymethyl methacrylate (PMMA). This includes light weight and high strength. This paper describes the effect of selected weight fractions (1, 2, 3, 4 & 5) % wt of nano(Alumina AL2O3, Zirconia ZrO2, Hydroxyapatite HA and Halloysite nanoClay) reinforcements on the biopolymer matrix (PMMA). Some tribology tests were used to evaluate the prepared system (impact strength, hardness surface, and wear rate) tests. The samples were fabricated by (Hand Lay-Up) with different particle reinforcement percentages. All tests were accomplished at room temperature, and samples were developed according to the ASTM standard. The weight fraction of (4% for AL2O3, 4% for ZrO2, 3% for HA and 5% for Clay) nanoparticles are the best results that appeared in the work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
期刊最新文献
Multiple Channels Model Based on Mel Spectrogram for Classifying Abnormalities in Lung Sound Effect of Plant Oil Derived Bio-Resin and Curing Temperature on Static and Dynamic Mechanical Properties of Epoxy Network Active Rehabilitation Gloves Based on Brain-Computer Interfaces and Deep Learning <i>In Vitro</i> Study: Bioactivity, Biocompatibility and Antibacterial Behavior for Polyetheretherketone Composites Synthesis of Colloidal Silver Nanoparticles Using Alginate as Reducing and Stabilizing Agents and its Application as Antibacterial Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1