将临床前评估转化为与临床相关的先进模型

Ekaterina Breous-Nystrom, Sven Kronenberg, Estelle Marrer-Berger, Adrian Roth, Thierry Lave, Thomas Singer
{"title":"将临床前评估转化为与临床相关的先进模型","authors":"Ekaterina Breous-Nystrom,&nbsp;Sven Kronenberg,&nbsp;Estelle Marrer-Berger,&nbsp;Adrian Roth,&nbsp;Thierry Lave,&nbsp;Thomas Singer","doi":"10.1016/j.cotox.2020.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>The advances in the immunotherapy<span> field in the last decade have enabled efficient treatment of previously intractable cancers. These advances have also exposed the limitations of commonly used animal models<span> for safety prediction of such drugs. In fact, 90% biological immunotherapies entering clinical trials fail because of low efficacy and/or unmanageable toxicity despite having undergone rigorous preclinical safety assessment. This low predictability is due to challenges related to the poor conservation of key immune-biological aspects between man and standard preclinical safety workhorses. To void this gap, new models are urgently needed. Here, we discuss the growing area of advanced human physiological in vitro and in silico models and propose future directions needed to enable more accurate and faster prediction of drug responses.</span></span></p></div>","PeriodicalId":93968,"journal":{"name":"Current opinion in toxicology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cotox.2020.03.002","citationCount":"0","resultStr":"{\"title\":\"Transforming preclinical assessment to meet clinical relevance with advanced models\",\"authors\":\"Ekaterina Breous-Nystrom,&nbsp;Sven Kronenberg,&nbsp;Estelle Marrer-Berger,&nbsp;Adrian Roth,&nbsp;Thierry Lave,&nbsp;Thomas Singer\",\"doi\":\"10.1016/j.cotox.2020.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advances in the immunotherapy<span> field in the last decade have enabled efficient treatment of previously intractable cancers. These advances have also exposed the limitations of commonly used animal models<span> for safety prediction of such drugs. In fact, 90% biological immunotherapies entering clinical trials fail because of low efficacy and/or unmanageable toxicity despite having undergone rigorous preclinical safety assessment. This low predictability is due to challenges related to the poor conservation of key immune-biological aspects between man and standard preclinical safety workhorses. To void this gap, new models are urgently needed. Here, we discuss the growing area of advanced human physiological in vitro and in silico models and propose future directions needed to enable more accurate and faster prediction of drug responses.</span></span></p></div>\",\"PeriodicalId\":93968,\"journal\":{\"name\":\"Current opinion in toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cotox.2020.03.002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468202020300188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202020300188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年里,免疫治疗领域的进步使以前难治性癌症的有效治疗成为可能。这些进展也暴露了常用动物模型用于此类药物安全性预测的局限性。事实上,90%进入临床试验的生物免疫疗法虽然经过了严格的临床前安全性评估,但由于疗效低和/或毒性难以控制而失败。这种低可预测性是由于与人类和标准临床前安全工作马之间的关键免疫生物学方面的保护不良相关的挑战。为了弥补这一差距,迫切需要新的模式。在这里,我们讨论了先进的人体生理体外和硅模型的增长领域,并提出了未来需要的方向,以实现更准确和更快的药物反应预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transforming preclinical assessment to meet clinical relevance with advanced models

The advances in the immunotherapy field in the last decade have enabled efficient treatment of previously intractable cancers. These advances have also exposed the limitations of commonly used animal models for safety prediction of such drugs. In fact, 90% biological immunotherapies entering clinical trials fail because of low efficacy and/or unmanageable toxicity despite having undergone rigorous preclinical safety assessment. This low predictability is due to challenges related to the poor conservation of key immune-biological aspects between man and standard preclinical safety workhorses. To void this gap, new models are urgently needed. Here, we discuss the growing area of advanced human physiological in vitro and in silico models and propose future directions needed to enable more accurate and faster prediction of drug responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in toxicology
Current opinion in toxicology Toxicology, Biochemistry
CiteScore
8.50
自引率
0.00%
发文量
0
审稿时长
64 days
期刊最新文献
Adverse outcome pathway networks as the basis for the development of new approach methodologies: Liver toxicity as a case study New approach methodologies (NAMs) in drug safety assessment: A vision of the future Editorial: Transforming toxicology one cell at a time: A special issue on the application of scRNA-seq to the study of environmental response Editorial Board Practical lessons of the 3Rs: Learning from the past and looking toward the future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1