双台阶位置对滑行船体性能的影响分析

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2023-09-01 DOI:10.21278/brod74403
A. Trimulyono, M. L. Hakim, Chairizal Ardhan, Syaiful Tambah Putra Ahmad, T. Tuswan, A. W. B. Santosa
{"title":"双台阶位置对滑行船体性能的影响分析","authors":"A. Trimulyono, M. L. Hakim, Chairizal Ardhan, Syaiful Tambah Putra Ahmad, T. Tuswan, A. W. B. Santosa","doi":"10.21278/brod74403","DOIUrl":null,"url":null,"abstract":"Along with developing high-speed craft technology, the planing hull is growing with modifications for better performance. One such technology is stepped hull, both single and double. Planing hull with steps allows the boat to run at a relatively low drag-lift ratio with lower frictional resistance due to reduced wetted area. In this study, the hull was modified with variations in the position of the double steps, which aimed to determine the effect of the first and second step positions on the total resistance, dynamic trim, and dynamic sinkage generated by computational fluid dynamics (CFD). Based on the analysis results, variations in the position of the stepped can change the hull performance. Shortening the distance between the two steps and moving both rearwards toward the transom can lower the total resistance. The dynamic trim and dynamic sinkage decreased as the position of the two steps was shifted further forward. An equation created in a non-dimensional form relates the positions of two steps to the desired results of total resistance, dynamic trim, and dynamic sinkage, namely: {(x1-x2)/L + (x1x2)/(LB)} × Fr∇, where x1 is distance the first step from transom, x2 is the distance of the second step, L is the length of the boat, B is the beam of the boat, and Fr∇ is the volume Froude number.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of the double steps position effect on planing hull performances\",\"authors\":\"A. Trimulyono, M. L. Hakim, Chairizal Ardhan, Syaiful Tambah Putra Ahmad, T. Tuswan, A. W. B. Santosa\",\"doi\":\"10.21278/brod74403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with developing high-speed craft technology, the planing hull is growing with modifications for better performance. One such technology is stepped hull, both single and double. Planing hull with steps allows the boat to run at a relatively low drag-lift ratio with lower frictional resistance due to reduced wetted area. In this study, the hull was modified with variations in the position of the double steps, which aimed to determine the effect of the first and second step positions on the total resistance, dynamic trim, and dynamic sinkage generated by computational fluid dynamics (CFD). Based on the analysis results, variations in the position of the stepped can change the hull performance. Shortening the distance between the two steps and moving both rearwards toward the transom can lower the total resistance. The dynamic trim and dynamic sinkage decreased as the position of the two steps was shifted further forward. An equation created in a non-dimensional form relates the positions of two steps to the desired results of total resistance, dynamic trim, and dynamic sinkage, namely: {(x1-x2)/L + (x1x2)/(LB)} × Fr∇, where x1 is distance the first step from transom, x2 is the distance of the second step, L is the length of the boat, B is the beam of the boat, and Fr∇ is the volume Froude number.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod74403\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod74403","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2

摘要

随着高速航行技术的发展,滑行船体也在不断改进,以获得更好的性能。一种这样的技术是阶梯式船体,包括单体和双体。带有台阶的扁平船体使船能够以相对较低的阻力-升力比运行,并且由于润湿面积的减少而具有较低的摩擦阻力。在这项研究中,随着双台阶位置的变化对船体进行了修改,旨在确定第一和第二台阶位置对计算流体动力学(CFD)产生的总阻力、动态配平和动态下沉的影响。根据分析结果,阶梯位置的变化会改变船体性能。缩短两个台阶之间的距离并将两个台阶向后移向横梁可以降低总阻力。随着两个台阶的位置进一步向前移动,动态配平和动态下沉量减小。一个以无量纲形式创建的方程将两个台阶的位置与总阻力、动态纵倾和动态下沉的期望结果联系起来,即:{(x1-x2)/L+(x1x2)/(LB)}×Frõ,其中x1是第一个台阶到横框的距离,x2是第二个台阶的距离,L是船的长度,B是船的梁,并且Frř是体积弗劳德数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the double steps position effect on planing hull performances
Along with developing high-speed craft technology, the planing hull is growing with modifications for better performance. One such technology is stepped hull, both single and double. Planing hull with steps allows the boat to run at a relatively low drag-lift ratio with lower frictional resistance due to reduced wetted area. In this study, the hull was modified with variations in the position of the double steps, which aimed to determine the effect of the first and second step positions on the total resistance, dynamic trim, and dynamic sinkage generated by computational fluid dynamics (CFD). Based on the analysis results, variations in the position of the stepped can change the hull performance. Shortening the distance between the two steps and moving both rearwards toward the transom can lower the total resistance. The dynamic trim and dynamic sinkage decreased as the position of the two steps was shifted further forward. An equation created in a non-dimensional form relates the positions of two steps to the desired results of total resistance, dynamic trim, and dynamic sinkage, namely: {(x1-x2)/L + (x1x2)/(LB)} × Fr∇, where x1 is distance the first step from transom, x2 is the distance of the second step, L is the length of the boat, B is the beam of the boat, and Fr∇ is the volume Froude number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Application of an offline grey box method for predicting the manoeuvring performance Four-quadrant propeller hydrodynamic performance mapping for improving ship motion predictions Optimization of exhaust ejector with lobed nozzle for marine gas turbine Control method for the ship track and speed in curved channels Research on temperature distribution in container ship with Type-B LNG fuel tank based on CFD and analytical method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1