用于机器学习辅助人体运动预测的全天然层状硅酸盐多糖摩擦电传感器

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2023-04-17 DOI:10.1038/s41528-023-00254-3
Yuanhao Liu, Yiwen Shen, Wei Ding, Xiangkun Zhang, Weiliang Tian, Song Yang, Bin Hui, Kewei Zhang
{"title":"用于机器学习辅助人体运动预测的全天然层状硅酸盐多糖摩擦电传感器","authors":"Yuanhao Liu, Yiwen Shen, Wei Ding, Xiangkun Zhang, Weiliang Tian, Song Yang, Bin Hui, Kewei Zhang","doi":"10.1038/s41528-023-00254-3","DOIUrl":null,"url":null,"abstract":"The rapid development of smart and carbon-neutral cities motivates the potential of natural materials for triboelectric electronics. However, the relatively deficient charge density makes it challenging to achieve high Maxwell’s displacement current. Here, we propose a methodology for improving the triboelectricity of marine polysaccharide by incorporating charged phyllosilicate nanosheets. As a proof-of-concept, a flexible, flame-retardant, and eco-friendly triboelectric sensor is developed based on all-natural composite paper from alginate fibers and vermiculite nanosheets. The interlaced fibers and nanosheets not only enable superior electrical output but also give rise to wear resistance and mechanical stability. The fabricated triboelectric sensor successfully monitors slight motion signals from various joints of human body. Moreover, an effective machine-learning model is developed for human motion identification and prediction with accuracy of 96.2% and 99.8%, respectively. This work offers a promising strategy for improving the triboelectricity of organo-substrates and enables implementation of self-powered and intelligent platform for emerging applications.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":null,"pages":null},"PeriodicalIF":12.3000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00254-3.pdf","citationCount":"5","resultStr":"{\"title\":\"All-natural phyllosilicate-polysaccharide triboelectric sensor for machine learning-assisted human motion prediction\",\"authors\":\"Yuanhao Liu, Yiwen Shen, Wei Ding, Xiangkun Zhang, Weiliang Tian, Song Yang, Bin Hui, Kewei Zhang\",\"doi\":\"10.1038/s41528-023-00254-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of smart and carbon-neutral cities motivates the potential of natural materials for triboelectric electronics. However, the relatively deficient charge density makes it challenging to achieve high Maxwell’s displacement current. Here, we propose a methodology for improving the triboelectricity of marine polysaccharide by incorporating charged phyllosilicate nanosheets. As a proof-of-concept, a flexible, flame-retardant, and eco-friendly triboelectric sensor is developed based on all-natural composite paper from alginate fibers and vermiculite nanosheets. The interlaced fibers and nanosheets not only enable superior electrical output but also give rise to wear resistance and mechanical stability. The fabricated triboelectric sensor successfully monitors slight motion signals from various joints of human body. Moreover, an effective machine-learning model is developed for human motion identification and prediction with accuracy of 96.2% and 99.8%, respectively. This work offers a promising strategy for improving the triboelectricity of organo-substrates and enables implementation of self-powered and intelligent platform for emerging applications.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-023-00254-3.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-023-00254-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00254-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5

摘要

智能城市和碳中和城市的快速发展激发了天然材料在三电电子学方面的潜力。然而,由于电荷密度相对不足,实现高麦克斯韦位移电流具有挑战性。在此,我们提出了一种通过加入带电的硅酸钙纳米片来提高海洋多糖三电性的方法。作为概念验证,我们基于海藻酸纤维和蛭石纳米片的全天然复合纸,开发了一种柔性、阻燃、环保的三电位传感器。交错的纤维和纳米片不仅能实现出色的电输出,还具有耐磨性和机械稳定性。制造出的三电传感器成功地监测到了来自人体各个关节的轻微运动信号。此外,还开发出一种有效的机器学习模型,用于人体运动识别和预测,准确率分别达到 96.2% 和 99.8%。这项工作为提高有机基材的三电性提供了一种前景广阔的策略,并能为新兴应用实现自供电智能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All-natural phyllosilicate-polysaccharide triboelectric sensor for machine learning-assisted human motion prediction
The rapid development of smart and carbon-neutral cities motivates the potential of natural materials for triboelectric electronics. However, the relatively deficient charge density makes it challenging to achieve high Maxwell’s displacement current. Here, we propose a methodology for improving the triboelectricity of marine polysaccharide by incorporating charged phyllosilicate nanosheets. As a proof-of-concept, a flexible, flame-retardant, and eco-friendly triboelectric sensor is developed based on all-natural composite paper from alginate fibers and vermiculite nanosheets. The interlaced fibers and nanosheets not only enable superior electrical output but also give rise to wear resistance and mechanical stability. The fabricated triboelectric sensor successfully monitors slight motion signals from various joints of human body. Moreover, an effective machine-learning model is developed for human motion identification and prediction with accuracy of 96.2% and 99.8%, respectively. This work offers a promising strategy for improving the triboelectricity of organo-substrates and enables implementation of self-powered and intelligent platform for emerging applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Combustion-assisted low-temperature ZrO2/SnO2 films for high-performance flexible thin film transistors Analytic modeling and validation of strain in textile-based OLEDs for advanced textile display technologies Fully biodegradable electrochromic display for disposable patch Strain-dependent charge trapping and its impact on the operational stability of polymer field-effect transistors Flexible TiO2-WO3−x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1