Roilhi Frajo Ibarra Hernández, Miguel A. Alonso-Arévalo, E. García-Canseco
{"title":"频谱与稀疏特征提取方法在心音分类中的比较","authors":"Roilhi Frajo Ibarra Hernández, Miguel A. Alonso-Arévalo, E. García-Canseco","doi":"10.17488/rmib.44.4.1","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases (CVDs) remain the leading cause of morbidity worldwide. The heart sound signal or phonocardiogram (PCG) is the most simple, low-cost, and effective tool to assist physicians in diagnosing CVDs. Advances in signal processing and machine learning have motivated the design of computer-aided systems for heart illness detection based only on the PCG. The objective of this work is to compare the effects of using spectral and sparse features for a classification scheme to detect the presence/absence of a pathological state in a heart sound signal, more specifically, sparse representations using Matching Pursuit with multiscale Gabor time-frequency dictionaries, linear prediction coding, and Mel-frequency cepstral coefficients. This work compares the performance of PCGs classification applying features as a result of averaging the samples or the features for each PCG sound event when feeding a random forest (RF) classifier. For data balancing, random under-sampling and synthetic minority oversampling (SMOTE) methods were applied. Furthermore, we compare the Correlation Feature Selection (CFS) and Information Gain (IG) for the dimensionality reduction. The findings show a SE=93.17 %, SP=84.32 % and ACC=85.9 % when joining MP+LPC+MFCC features set with an AUC=0.969 showing that these features are promising to be used in heart sounds anomaly detection schemes.","PeriodicalId":38670,"journal":{"name":"Revista Mexicana de Ingenieria Biomedica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Spectral and Sparse Feature Extraction Methods for Heart Sounds Classification\",\"authors\":\"Roilhi Frajo Ibarra Hernández, Miguel A. Alonso-Arévalo, E. García-Canseco\",\"doi\":\"10.17488/rmib.44.4.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular diseases (CVDs) remain the leading cause of morbidity worldwide. The heart sound signal or phonocardiogram (PCG) is the most simple, low-cost, and effective tool to assist physicians in diagnosing CVDs. Advances in signal processing and machine learning have motivated the design of computer-aided systems for heart illness detection based only on the PCG. The objective of this work is to compare the effects of using spectral and sparse features for a classification scheme to detect the presence/absence of a pathological state in a heart sound signal, more specifically, sparse representations using Matching Pursuit with multiscale Gabor time-frequency dictionaries, linear prediction coding, and Mel-frequency cepstral coefficients. This work compares the performance of PCGs classification applying features as a result of averaging the samples or the features for each PCG sound event when feeding a random forest (RF) classifier. For data balancing, random under-sampling and synthetic minority oversampling (SMOTE) methods were applied. Furthermore, we compare the Correlation Feature Selection (CFS) and Information Gain (IG) for the dimensionality reduction. The findings show a SE=93.17 %, SP=84.32 % and ACC=85.9 % when joining MP+LPC+MFCC features set with an AUC=0.969 showing that these features are promising to be used in heart sounds anomaly detection schemes.\",\"PeriodicalId\":38670,\"journal\":{\"name\":\"Revista Mexicana de Ingenieria Biomedica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana de Ingenieria Biomedica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17488/rmib.44.4.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana de Ingenieria Biomedica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17488/rmib.44.4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Comparison of Spectral and Sparse Feature Extraction Methods for Heart Sounds Classification
Cardiovascular diseases (CVDs) remain the leading cause of morbidity worldwide. The heart sound signal or phonocardiogram (PCG) is the most simple, low-cost, and effective tool to assist physicians in diagnosing CVDs. Advances in signal processing and machine learning have motivated the design of computer-aided systems for heart illness detection based only on the PCG. The objective of this work is to compare the effects of using spectral and sparse features for a classification scheme to detect the presence/absence of a pathological state in a heart sound signal, more specifically, sparse representations using Matching Pursuit with multiscale Gabor time-frequency dictionaries, linear prediction coding, and Mel-frequency cepstral coefficients. This work compares the performance of PCGs classification applying features as a result of averaging the samples or the features for each PCG sound event when feeding a random forest (RF) classifier. For data balancing, random under-sampling and synthetic minority oversampling (SMOTE) methods were applied. Furthermore, we compare the Correlation Feature Selection (CFS) and Information Gain (IG) for the dimensionality reduction. The findings show a SE=93.17 %, SP=84.32 % and ACC=85.9 % when joining MP+LPC+MFCC features set with an AUC=0.969 showing that these features are promising to be used in heart sounds anomaly detection schemes.
期刊介绍:
La Revista Mexicana de Ingeniería Biomédica (The Mexican Journal of Biomedical Engineering, RMIB, for its Spanish acronym) is a publication oriented to the dissemination of papers of the Mexican and international scientific community whose lines of research are aligned to the improvement of the quality of life through engineering techniques. The papers that are considered for being published in the RMIB must be original, unpublished, and first rate, and they can cover the areas of Medical Instrumentation, Biomedical Signals, Medical Information Technology, Biomaterials, Clinical Engineering, Physiological Models, and Medical Imaging as well as lines of research related to various branches of engineering applied to the health sciences.