在brainscale -2移动系统上演示模拟推理

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of circuits and systems Pub Date : 2022-09-21 DOI:10.1109/OJCAS.2022.3208413
Yannik Stradmann;Sebastian Billaudelle;Oliver Breitwieser;Falk Leonard Ebert;Arne Emmel;Dan Husmann;Joscha Ilmberger;Eric Müller;Philipp Spilger;Johannes Weis;Johannes Schemmel
{"title":"在brainscale -2移动系统上演示模拟推理","authors":"Yannik Stradmann;Sebastian Billaudelle;Oliver Breitwieser;Falk Leonard Ebert;Arne Emmel;Dan Husmann;Joscha Ilmberger;Eric Müller;Philipp Spilger;Johannes Weis;Johannes Schemmel","doi":"10.1109/OJCAS.2022.3208413","DOIUrl":null,"url":null,"abstract":"We present the BrainScaleS-2 mobile system as a compact analog inference engine based on the BrainScaleS-2 ASIC and demonstrate its capabilities at classifying a medical electrocardiogram dataset. The analog network core of the ASIC is utilized to perform the multiply-accumulate operations of a convolutional deep neural network. At a system power consumption of 5.6W, we measure a total energy consumption of \n<inline-formula> <tex-math>$\\mathrm {192 ~\\mu \\text {J} }$ </tex-math></inline-formula>\n for the ASIC and achieve a classification time of 276 \n<inline-formula> <tex-math>$\\mu$ </tex-math></inline-formula>\ns per electrocardiographic patient sample. Patients with atrial fibrillation are correctly identified with a detection rate of (93.7 ± 0.7)% at (14.0 ± 1.0)% false positives. The system is directly applicable to edge inference applications due to its small size, power envelope, and flexible I/O capabilities. It has enabled the BrainScaleS-2 ASIC to be operated reliably outside a specialized lab setting. In future applications, the system allows for a combination of conventional machine learning layers with online learning in spiking neural networks on a single neuromorphic platform.","PeriodicalId":93442,"journal":{"name":"IEEE open journal of circuits and systems","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8784029/9684754/09896927.pdf","citationCount":"7","resultStr":"{\"title\":\"Demonstrating Analog Inference on the BrainScaleS-2 Mobile System\",\"authors\":\"Yannik Stradmann;Sebastian Billaudelle;Oliver Breitwieser;Falk Leonard Ebert;Arne Emmel;Dan Husmann;Joscha Ilmberger;Eric Müller;Philipp Spilger;Johannes Weis;Johannes Schemmel\",\"doi\":\"10.1109/OJCAS.2022.3208413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the BrainScaleS-2 mobile system as a compact analog inference engine based on the BrainScaleS-2 ASIC and demonstrate its capabilities at classifying a medical electrocardiogram dataset. The analog network core of the ASIC is utilized to perform the multiply-accumulate operations of a convolutional deep neural network. At a system power consumption of 5.6W, we measure a total energy consumption of \\n<inline-formula> <tex-math>$\\\\mathrm {192 ~\\\\mu \\\\text {J} }$ </tex-math></inline-formula>\\n for the ASIC and achieve a classification time of 276 \\n<inline-formula> <tex-math>$\\\\mu$ </tex-math></inline-formula>\\ns per electrocardiographic patient sample. Patients with atrial fibrillation are correctly identified with a detection rate of (93.7 ± 0.7)% at (14.0 ± 1.0)% false positives. The system is directly applicable to edge inference applications due to its small size, power envelope, and flexible I/O capabilities. It has enabled the BrainScaleS-2 ASIC to be operated reliably outside a specialized lab setting. In future applications, the system allows for a combination of conventional machine learning layers with online learning in spiking neural networks on a single neuromorphic platform.\",\"PeriodicalId\":93442,\"journal\":{\"name\":\"IEEE open journal of circuits and systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8784029/9684754/09896927.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9896927/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9896927/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7

摘要

我们介绍了BrainScaleS-2移动系统作为一个基于BrainScaleS-2 ASIC的紧凑型模拟推理引擎,并展示了其对医学心电图数据集进行分类的能力。ASIC的模拟网络核心用于执行卷积深度神经网络的乘法累加运算。在5.6W的系统功耗下,我们测量了ASIC的总能耗$\mathrm{192~\mu\text{J}}$,并实现了每个心电图患者样本276$\mu$s的分类时间。心房颤动患者被正确识别,假阳性率为(14.0±1.0)%,检测率为(93.7±0.7)%。由于其体积小、功率包络和灵活的I/O功能,该系统可直接应用于边缘推理应用。它使BrainScaleS-2 ASIC能够在专业实验室环境之外可靠运行。在未来的应用中,该系统允许将传统的机器学习层与单个神经形态平台上的尖峰神经网络中的在线学习相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Demonstrating Analog Inference on the BrainScaleS-2 Mobile System
We present the BrainScaleS-2 mobile system as a compact analog inference engine based on the BrainScaleS-2 ASIC and demonstrate its capabilities at classifying a medical electrocardiogram dataset. The analog network core of the ASIC is utilized to perform the multiply-accumulate operations of a convolutional deep neural network. At a system power consumption of 5.6W, we measure a total energy consumption of $\mathrm {192 ~\mu \text {J} }$ for the ASIC and achieve a classification time of 276 $\mu$ s per electrocardiographic patient sample. Patients with atrial fibrillation are correctly identified with a detection rate of (93.7 ± 0.7)% at (14.0 ± 1.0)% false positives. The system is directly applicable to edge inference applications due to its small size, power envelope, and flexible I/O capabilities. It has enabled the BrainScaleS-2 ASIC to be operated reliably outside a specialized lab setting. In future applications, the system allows for a combination of conventional machine learning layers with online learning in spiking neural networks on a single neuromorphic platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Double MAC on a Cell: A 22-nm 8T-SRAM-Based Analog In-Memory Accelerator for Binary/Ternary Neural Networks Featuring Split Wordline A Companding Technique to Reduce Peak-to-Average Ratio in Discrete Multitone Wireline Receivers Low-Power On-Chip Energy Harvesting: From Interface Circuits Perspective A 10 GHz Dual-Loop PLL With Active Cycle-Jitter Correction Achieving 12dB Spur and 29% Jitter Reduction A 45Gb/s Analog Multi-Tone Receiver Utilizing a 6-Tap MIMO-FFE in 22nm FDSOI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1