汽车铝合金/复合材料粘接接头在各种典型老化环境下失效行为的系统研究

IF 2.9 4区 材料科学 Q2 ENGINEERING, CHEMICAL Journal of Adhesion Pub Date : 2022-10-31 DOI:10.1080/00218464.2022.2141114
Guofeng Qin, Guoshuai Li, Peiwen Mi, Yongjian Zhu, Ming Li, Jingxin Na
{"title":"汽车铝合金/复合材料粘接接头在各种典型老化环境下失效行为的系统研究","authors":"Guofeng Qin, Guoshuai Li, Peiwen Mi, Yongjian Zhu, Ming Li, Jingxin Na","doi":"10.1080/00218464.2022.2141114","DOIUrl":null,"url":null,"abstract":"ABSTRACT To systematically and comprehensively analyze the effects of different aging environments on the aging failure of aluminum alloy/CFRP (Carbon Fiber Reinforced Plastics) composite bonded shear and butt joints, seven typical aging environments of room temperature (23°C/20%RH, RT), high-temperature (80°C/20%RH, HT), low temperature (−40°C, LT), temperature cycles (−40 ~ 80°C/20%RH, TC), immersed in water at room temperature (IRT), high temperature and high humidity (80°C /95%RH, HTHH), and hygrothermal cycles (−40°C ~ 80°C /95%RH, HC) were selected to perform aging tests. The composition analysis revealed that the adhesive underwent the most significant post-curing in HT, followed by TC, while LT had almost no effect on the adhesive. It was also found that the degree of moisture absorption and hydrolysis of the adhesive in IRT, HTHH and HC decreased sequentially. A single temperature or humidity environment had small effect on the failure strength of bonded joints less than 20%, increasing temperature or humidity could further reduce the failure strength by about 30%, and periodically changing the temperature or humidity had the greatest effect on the failure strength by more than 40%. ANOVA (Analysis of Variance) shows that all the single factors of aging time, load type, or aging environment had significant effects on the failure strength, but the aging environment had the greatest effect. Multifactor coupling effects on the failure strength was not significant, except for the coupling effects of aging environment and aging time.","PeriodicalId":14778,"journal":{"name":"Journal of Adhesion","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A systematic study on the failure behaviors of aluminum alloy /composite bonded joints exposed to various typical aging environments for automobiles\",\"authors\":\"Guofeng Qin, Guoshuai Li, Peiwen Mi, Yongjian Zhu, Ming Li, Jingxin Na\",\"doi\":\"10.1080/00218464.2022.2141114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT To systematically and comprehensively analyze the effects of different aging environments on the aging failure of aluminum alloy/CFRP (Carbon Fiber Reinforced Plastics) composite bonded shear and butt joints, seven typical aging environments of room temperature (23°C/20%RH, RT), high-temperature (80°C/20%RH, HT), low temperature (−40°C, LT), temperature cycles (−40 ~ 80°C/20%RH, TC), immersed in water at room temperature (IRT), high temperature and high humidity (80°C /95%RH, HTHH), and hygrothermal cycles (−40°C ~ 80°C /95%RH, HC) were selected to perform aging tests. The composition analysis revealed that the adhesive underwent the most significant post-curing in HT, followed by TC, while LT had almost no effect on the adhesive. It was also found that the degree of moisture absorption and hydrolysis of the adhesive in IRT, HTHH and HC decreased sequentially. A single temperature or humidity environment had small effect on the failure strength of bonded joints less than 20%, increasing temperature or humidity could further reduce the failure strength by about 30%, and periodically changing the temperature or humidity had the greatest effect on the failure strength by more than 40%. ANOVA (Analysis of Variance) shows that all the single factors of aging time, load type, or aging environment had significant effects on the failure strength, but the aging environment had the greatest effect. Multifactor coupling effects on the failure strength was not significant, except for the coupling effects of aging environment and aging time.\",\"PeriodicalId\":14778,\"journal\":{\"name\":\"Journal of Adhesion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Adhesion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00218464.2022.2141114\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Adhesion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00218464.2022.2141114","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3

摘要

摘要为了系统、全面地分析不同老化环境对铝合金/CFRP(碳纤维增强塑料)复合材料粘结剪切接头和对接接头老化失效的影响,选择了室温(23°C/20%RH,RT)、高温(80°C/20%RHHT)、低温(−40°C,LT)七种典型老化环境,选择温度循环(−40~80°C/20%RH,TC)、室温(IRT)、高温高湿(80°C/95%RH,HTHH)和湿热循环(−40°C~80°C/95%RH,HC)进行老化试验。成分分析显示,粘合剂在HT中经历了最显著的后固化,其次是TC,而LT对粘合剂几乎没有影响。还发现粘合剂在IRT、HTHH和HC中的吸湿和水解程度依次降低。单一的温度或湿度环境对粘结接头的破坏强度影响较小,小于20%,增加温度或湿度可使破坏强度进一步降低约30%,而周期性地改变温度或湿度对破坏强度的影响最大,超过40%。方差分析(ANOVA)表明,老化时间、载荷类型或老化环境的所有单一因素对失效强度都有显著影响,但老化环境的影响最大。除了老化环境和老化时间的耦合效应外,多因素耦合对失效强度的影响并不显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A systematic study on the failure behaviors of aluminum alloy /composite bonded joints exposed to various typical aging environments for automobiles
ABSTRACT To systematically and comprehensively analyze the effects of different aging environments on the aging failure of aluminum alloy/CFRP (Carbon Fiber Reinforced Plastics) composite bonded shear and butt joints, seven typical aging environments of room temperature (23°C/20%RH, RT), high-temperature (80°C/20%RH, HT), low temperature (−40°C, LT), temperature cycles (−40 ~ 80°C/20%RH, TC), immersed in water at room temperature (IRT), high temperature and high humidity (80°C /95%RH, HTHH), and hygrothermal cycles (−40°C ~ 80°C /95%RH, HC) were selected to perform aging tests. The composition analysis revealed that the adhesive underwent the most significant post-curing in HT, followed by TC, while LT had almost no effect on the adhesive. It was also found that the degree of moisture absorption and hydrolysis of the adhesive in IRT, HTHH and HC decreased sequentially. A single temperature or humidity environment had small effect on the failure strength of bonded joints less than 20%, increasing temperature or humidity could further reduce the failure strength by about 30%, and periodically changing the temperature or humidity had the greatest effect on the failure strength by more than 40%. ANOVA (Analysis of Variance) shows that all the single factors of aging time, load type, or aging environment had significant effects on the failure strength, but the aging environment had the greatest effect. Multifactor coupling effects on the failure strength was not significant, except for the coupling effects of aging environment and aging time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Adhesion
Journal of Adhesion 工程技术-材料科学:综合
CiteScore
5.30
自引率
9.10%
发文量
55
审稿时长
1 months
期刊介绍: The Journal of Adhesion is dedicated to perpetuating understanding of the phenomenon of adhesion and its practical applications. The art of adhesion is maturing into a science that requires a broad, coordinated interdisciplinary effort to help illuminate its complex nature and numerous manifestations.
期刊最新文献
Heated press welding: analysis of the parameters influencing the mechanical strength of hybrid PA66/PA12 thermoplastic and S235 steel sheet joints Effect of exposure to UV-C rays on fire retardancy and adherence of curable polymer resins for application in disinfection chambers Adhesion property of municipal solid waste incinerator bottom ash and limestone with asphalt based on surface energy theory Experimental investigation and molecular simulation on the chemical bonding between laser-treated titanium alloy amorphous surface and epoxy adhesive Preparation of isocyanate microcapsules by complex coacervation and its application in plywood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1