{"title":"几何波导杂散光分析与设计优化","authors":"Yao Zhou, Jufan Zhang, F. Fang","doi":"10.1515/aot-2020-0059","DOIUrl":null,"url":null,"abstract":"Abstract Waveguide technology has great prospects of development in optical see-through near-eye displays with larger field of view, lower thickness and lighter weight than other conventional optical technologies. However, the stray light is usually inevitable in current optical design and manufacturing, causing a poor imaging quality. In this paper, the principle and structures of stray light generation are analyzed, and the causes are discussed by non-sequential ray-tracing with mass precision calculation. From the ray-tracing, the suppression of stray light by optimizing design and manufacturing are achieved. A 2 mm-thickness geometrical waveguide with partially reflective mirror array is designed. The field of view of the optimized geometrical waveguide reaches 47° with 10 mm at exit pupil diameter and 20 mm at eye relief.","PeriodicalId":46010,"journal":{"name":"Advanced Optical Technologies","volume":"10 1","pages":"71 - 79"},"PeriodicalIF":2.3000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/aot-2020-0059","citationCount":"3","resultStr":"{\"title\":\"Stray light analysis and design optimization of geometrical waveguide\",\"authors\":\"Yao Zhou, Jufan Zhang, F. Fang\",\"doi\":\"10.1515/aot-2020-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Waveguide technology has great prospects of development in optical see-through near-eye displays with larger field of view, lower thickness and lighter weight than other conventional optical technologies. However, the stray light is usually inevitable in current optical design and manufacturing, causing a poor imaging quality. In this paper, the principle and structures of stray light generation are analyzed, and the causes are discussed by non-sequential ray-tracing with mass precision calculation. From the ray-tracing, the suppression of stray light by optimizing design and manufacturing are achieved. A 2 mm-thickness geometrical waveguide with partially reflective mirror array is designed. The field of view of the optimized geometrical waveguide reaches 47° with 10 mm at exit pupil diameter and 20 mm at eye relief.\",\"PeriodicalId\":46010,\"journal\":{\"name\":\"Advanced Optical Technologies\",\"volume\":\"10 1\",\"pages\":\"71 - 79\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/aot-2020-0059\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/aot-2020-0059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/aot-2020-0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Stray light analysis and design optimization of geometrical waveguide
Abstract Waveguide technology has great prospects of development in optical see-through near-eye displays with larger field of view, lower thickness and lighter weight than other conventional optical technologies. However, the stray light is usually inevitable in current optical design and manufacturing, causing a poor imaging quality. In this paper, the principle and structures of stray light generation are analyzed, and the causes are discussed by non-sequential ray-tracing with mass precision calculation. From the ray-tracing, the suppression of stray light by optimizing design and manufacturing are achieved. A 2 mm-thickness geometrical waveguide with partially reflective mirror array is designed. The field of view of the optimized geometrical waveguide reaches 47° with 10 mm at exit pupil diameter and 20 mm at eye relief.
期刊介绍:
Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development. Advanced Optical Technologies partners with the European Optical Society (EOS). All its 4.500+ members have free online access to the journal through their EOS member account. Topics: Optical design, Lithography, Opto-mechanical engineering, Illumination and lighting technology, Precision fabrication, Image sensor devices, Optical materials (polymer based, inorganic, crystalline/amorphous), Optical instruments in life science (biology, medicine, laboratories), Optical metrology, Optics in aerospace/defense, Simulation, interdisciplinary, Optics for astronomy, Standards, Consumer optics, Optical coatings.