多叶轮结构对赭曲霉静止细胞转化canrenone的影响

IF 1.6 4区 工程技术 Q3 Chemical Engineering International Journal of Chemical Reactor Engineering Pub Date : 2023-05-10 DOI:10.1515/ijcre-2022-0219
Juan Huang, Huixuan Zhu, Shimin Guan, H. Tian, Chen Chen, Bo Zhang, Shaofeng Rong
{"title":"多叶轮结构对赭曲霉静止细胞转化canrenone的影响","authors":"Juan Huang, Huixuan Zhu, Shimin Guan, H. Tian, Chen Chen, Bo Zhang, Shaofeng Rong","doi":"10.1515/ijcre-2022-0219","DOIUrl":null,"url":null,"abstract":"Abstract 11 α-Hydroxycanrenone is a key intermediate in the synthesis of eplernone which is a drug that protects the cardiovascular system. It can be obtained by microbial transformation of canrenone using Aspergillus ochraceus. The impeller configuration has a great impact on the microbial transformation efficiency. In this study, three kinds of multiple-impeller including six-blade Rushton turbine (lower) and six-blade Rushton turbine (upper) (RT + RT), six-blade Rushton turbine (lower) and six-arrow blade turbine (upper) (RT + ABT), six-blade Rushton turbine impeller (lower) and six-blade Chemineer CD6 impeller (upper) (RT + CD6) were employed to carry out the microbial conversion process, which was investigated by experiments and computational fluid dynamic (CFD) simulations. The CFD simulation was performed only for the hydrodynamic part of the bioreactor in this article. The results showed that RT + CD6 gave better conversion ratio compared to the other two multiple impellers. It had higher axial flow and better air volume fraction distribution which was benefit for the biotransformation process. A certain amount of cell content should be guaranteed in order to obtain a good substrate conversion (45 % approximately). The final conversion ratio of canrenone was proportional to the content of mycelium at the late stage of conversion, while the content of mycelium at the early stage had a subtle effect. Besides, A. ochraceus resting cells could tolerate the maximum and average shear strain rate in the order of 2598 s−1 and 52 s−1, respectively. The research results provided a guide for the selection of impeller for the biotransformation of canrenone in biopharmaceutical industry.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of the configurations of multiple-impeller on canrenone bioconversion using resting cells of Aspergillus ochraceus\",\"authors\":\"Juan Huang, Huixuan Zhu, Shimin Guan, H. Tian, Chen Chen, Bo Zhang, Shaofeng Rong\",\"doi\":\"10.1515/ijcre-2022-0219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract 11 α-Hydroxycanrenone is a key intermediate in the synthesis of eplernone which is a drug that protects the cardiovascular system. It can be obtained by microbial transformation of canrenone using Aspergillus ochraceus. The impeller configuration has a great impact on the microbial transformation efficiency. In this study, three kinds of multiple-impeller including six-blade Rushton turbine (lower) and six-blade Rushton turbine (upper) (RT + RT), six-blade Rushton turbine (lower) and six-arrow blade turbine (upper) (RT + ABT), six-blade Rushton turbine impeller (lower) and six-blade Chemineer CD6 impeller (upper) (RT + CD6) were employed to carry out the microbial conversion process, which was investigated by experiments and computational fluid dynamic (CFD) simulations. The CFD simulation was performed only for the hydrodynamic part of the bioreactor in this article. The results showed that RT + CD6 gave better conversion ratio compared to the other two multiple impellers. It had higher axial flow and better air volume fraction distribution which was benefit for the biotransformation process. A certain amount of cell content should be guaranteed in order to obtain a good substrate conversion (45 % approximately). The final conversion ratio of canrenone was proportional to the content of mycelium at the late stage of conversion, while the content of mycelium at the early stage had a subtle effect. Besides, A. ochraceus resting cells could tolerate the maximum and average shear strain rate in the order of 2598 s−1 and 52 s−1, respectively. The research results provided a guide for the selection of impeller for the biotransformation of canrenone in biopharmaceutical industry.\",\"PeriodicalId\":51069,\"journal\":{\"name\":\"International Journal of Chemical Reactor Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Reactor Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ijcre-2022-0219\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0219","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要11 α-羟基canrenone是合成eplerone的关键中间体,eplerone是一种保护心血管系统的药物。利用赭曲霉对canrenone进行微生物转化可获得。叶轮的配置对微生物转化效率有很大影响。本研究采用六叶Rushton涡轮(下)和六叶Rushton涡轮(上)(RT + RT)、六叶Rushton涡轮(下)和六箭叶涡轮(上)(RT + ABT)、六叶Rushton涡轮叶轮(下)和六叶Chemineer CD6叶轮(上)(RT + CD6)三种多叶叶轮进行微生物转化过程,通过实验和计算流体动力学(CFD)模拟进行了研究。本文仅对生物反应器的水动力部分进行了CFD模拟。结果表明,RT + CD6比其他两种多叶轮具有更好的转化率。它具有较高的轴流和较好的空气体积分数分布,有利于生物转化过程。为了获得良好的底物转化率(约为45% %),应保证一定量的细胞含量。卡侬酮的最终转化率与转化后期菌丝体含量成正比,而早期菌丝体含量影响不大。此外,A. ochraceus静息细胞能承受的最大剪切应变速率和平均剪切应变速率分别为2598 s−1和52 s−1。研究结果可为生物制药行业中蒽酮生物转化用叶轮的选择提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The influence of the configurations of multiple-impeller on canrenone bioconversion using resting cells of Aspergillus ochraceus
Abstract 11 α-Hydroxycanrenone is a key intermediate in the synthesis of eplernone which is a drug that protects the cardiovascular system. It can be obtained by microbial transformation of canrenone using Aspergillus ochraceus. The impeller configuration has a great impact on the microbial transformation efficiency. In this study, three kinds of multiple-impeller including six-blade Rushton turbine (lower) and six-blade Rushton turbine (upper) (RT + RT), six-blade Rushton turbine (lower) and six-arrow blade turbine (upper) (RT + ABT), six-blade Rushton turbine impeller (lower) and six-blade Chemineer CD6 impeller (upper) (RT + CD6) were employed to carry out the microbial conversion process, which was investigated by experiments and computational fluid dynamic (CFD) simulations. The CFD simulation was performed only for the hydrodynamic part of the bioreactor in this article. The results showed that RT + CD6 gave better conversion ratio compared to the other two multiple impellers. It had higher axial flow and better air volume fraction distribution which was benefit for the biotransformation process. A certain amount of cell content should be guaranteed in order to obtain a good substrate conversion (45 % approximately). The final conversion ratio of canrenone was proportional to the content of mycelium at the late stage of conversion, while the content of mycelium at the early stage had a subtle effect. Besides, A. ochraceus resting cells could tolerate the maximum and average shear strain rate in the order of 2598 s−1 and 52 s−1, respectively. The research results provided a guide for the selection of impeller for the biotransformation of canrenone in biopharmaceutical industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.
期刊最新文献
VOCs (toluene) removal from iron ore sintering flue gas via LaBO3 (B = Cu, Fe, Cr, Mn, Co) perovskite catalysts: experiment and mechanism Ethyl acetate production by Fischer esterification: use of excess of acetic acid and complete separation sequence Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor R dot approach for kinetic modelling of WGS over noble metals Retraction of: Computational fluid dynamic simulations to improve heat transfer in shell tube heat exchangers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1