通过众包和结构化分析技术改进分析推理

IF 2.2 Q3 ENGINEERING, INDUSTRIAL Journal of Cognitive Engineering and Decision Making Pub Date : 2020-08-17 DOI:10.1177/1555343420926287
T. van Gelder, Ariel Kruger, Sujai Thomman, Richard de Rozario, Elizabeth Silver, Morgan Saletta, Ashley Barnett, R. Sinnott, G. Jayaputera, M. Burgman
{"title":"通过众包和结构化分析技术改进分析推理","authors":"T. van Gelder, Ariel Kruger, Sujai Thomman, Richard de Rozario, Elizabeth Silver, Morgan Saletta, Ashley Barnett, R. Sinnott, G. Jayaputera, M. Burgman","doi":"10.1177/1555343420926287","DOIUrl":null,"url":null,"abstract":"How might analytic reasoning in intelligence reports be substantially improved? One conjecture is that this can be achieved through a combination of crowdsourcing and structured analytic techniques (SATs). To explore this conjecture, we developed a new crowdsourcing platform supporting groups in collaborative reasoning and intelligence report drafting using a novel SAT we call “Contending Analyses.” In this paper we present findings from a large study designed to assess whether groups of professional analysts working on the platform produce better-reasoned reports than those analysts produce when using methods and tools normally used in their organizations. Secondary questions were whether professional analysts working on the platform produce better reasoning than the general public working on the platform; and how usable the platform is. Our main finding is a large effect size (Cohen’s d = 1.37) in favor of working on platform. This provides early support for the general conjecture. We discuss limitations of our study, implications for intelligence organizations, and future directions for the work as a whole.","PeriodicalId":46342,"journal":{"name":"Journal of Cognitive Engineering and Decision Making","volume":"14 1","pages":"195 - 217"},"PeriodicalIF":2.2000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1555343420926287","citationCount":"6","resultStr":"{\"title\":\"Improving Analytic Reasoning via Crowdsourcing and Structured Analytic Techniques\",\"authors\":\"T. van Gelder, Ariel Kruger, Sujai Thomman, Richard de Rozario, Elizabeth Silver, Morgan Saletta, Ashley Barnett, R. Sinnott, G. Jayaputera, M. Burgman\",\"doi\":\"10.1177/1555343420926287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How might analytic reasoning in intelligence reports be substantially improved? One conjecture is that this can be achieved through a combination of crowdsourcing and structured analytic techniques (SATs). To explore this conjecture, we developed a new crowdsourcing platform supporting groups in collaborative reasoning and intelligence report drafting using a novel SAT we call “Contending Analyses.” In this paper we present findings from a large study designed to assess whether groups of professional analysts working on the platform produce better-reasoned reports than those analysts produce when using methods and tools normally used in their organizations. Secondary questions were whether professional analysts working on the platform produce better reasoning than the general public working on the platform; and how usable the platform is. Our main finding is a large effect size (Cohen’s d = 1.37) in favor of working on platform. This provides early support for the general conjecture. We discuss limitations of our study, implications for intelligence organizations, and future directions for the work as a whole.\",\"PeriodicalId\":46342,\"journal\":{\"name\":\"Journal of Cognitive Engineering and Decision Making\",\"volume\":\"14 1\",\"pages\":\"195 - 217\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1555343420926287\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cognitive Engineering and Decision Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1555343420926287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognitive Engineering and Decision Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1555343420926287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 6

摘要

如何实质性地改进情报报告中的分析推理?一种推测是,这可以通过众包和结构化分析技术(SAT)的结合来实现。为了探索这一猜测,我们开发了一个新的众包平台,支持团队使用一种新的SAT进行协作推理和情报报告起草,我们称之为“竞争分析”。“在这篇论文中,我们介绍了一项大型研究的结果,该研究旨在评估在平台上工作的专业分析师群体在使用其组织中通常使用的方法和工具时,是否会产生比这些分析师更合理的报告。次要问题是,在该平台上工作的专业分析师是否比在该平台工作的普通公众产生了更好的推理;以及平台的可用性。我们的主要发现是有利于在平台上工作的大效应大小(Cohen的d=1.37)。这为一般猜想提供了早期的支持。我们讨论了我们研究的局限性,对情报机构的影响,以及整个工作的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Analytic Reasoning via Crowdsourcing and Structured Analytic Techniques
How might analytic reasoning in intelligence reports be substantially improved? One conjecture is that this can be achieved through a combination of crowdsourcing and structured analytic techniques (SATs). To explore this conjecture, we developed a new crowdsourcing platform supporting groups in collaborative reasoning and intelligence report drafting using a novel SAT we call “Contending Analyses.” In this paper we present findings from a large study designed to assess whether groups of professional analysts working on the platform produce better-reasoned reports than those analysts produce when using methods and tools normally used in their organizations. Secondary questions were whether professional analysts working on the platform produce better reasoning than the general public working on the platform; and how usable the platform is. Our main finding is a large effect size (Cohen’s d = 1.37) in favor of working on platform. This provides early support for the general conjecture. We discuss limitations of our study, implications for intelligence organizations, and future directions for the work as a whole.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
21
期刊最新文献
Is the Pull-Down Effect Overstated? An Examination of Trust Propagation Among Fighter Pilots in a High-Fidelity Simulation A Taxonomy for AI Hazard Analysis Understanding Automation Failure Integrating Function Allocation and Operational Event Sequence Diagrams to Support Human-Robot Coordination: Case Study of a Robotic Date Thinning System Adapting Cognitive Task Analysis Methods for Use in a Large Sample Simulation Study of High-Risk Healthcare Events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1