{"title":"抵抗素,一个多潜能治疗靶点","authors":"J. L. Vique‐Sánchez","doi":"10.33263/briac134.384","DOIUrl":null,"url":null,"abstract":"Being overweight and obese are risk factors that have increased during the COVID-19 pandemic; these factors increase the white adipose tissue (WAT) that increases the release of adipokines (adiponectin, leptin, and resistin). So, obesity provokes the expansion of adipose tissue; it induces changes in their macrophages of pro-inflammatory cytokines (M2 to M1). These changes increase the resistin levels with effects on the metabolism, inflammation process, glucose homeostasis, and insulin resistance, promote cell proliferation and migration, and even serve as a biomarker for tumorigenesis. Therefore, resistin is proposed as a multipotential therapeutic target to treat different diseases, between chronic-degenerative and some types of cancer, because resistin has characteristics that give it a high probability to be a therapeutic target to attend to and prevent various diseases. In different ways, developing new drugs by molecular docking to use molecules with pharmacological characteristics capable of interacting in the regions of resistin to hinder/block the interaction between resistin and their receptors (Δ-DCN, TLR4, and CAP-1) and by promoting health to reduce overweight and obesity, and this could generate lower plasma serum resistin values, so this review remarks the potential of resistin as multipotential therapeutic target.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistin, a Multipotential Therapeutic Target\",\"authors\":\"J. L. Vique‐Sánchez\",\"doi\":\"10.33263/briac134.384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Being overweight and obese are risk factors that have increased during the COVID-19 pandemic; these factors increase the white adipose tissue (WAT) that increases the release of adipokines (adiponectin, leptin, and resistin). So, obesity provokes the expansion of adipose tissue; it induces changes in their macrophages of pro-inflammatory cytokines (M2 to M1). These changes increase the resistin levels with effects on the metabolism, inflammation process, glucose homeostasis, and insulin resistance, promote cell proliferation and migration, and even serve as a biomarker for tumorigenesis. Therefore, resistin is proposed as a multipotential therapeutic target to treat different diseases, between chronic-degenerative and some types of cancer, because resistin has characteristics that give it a high probability to be a therapeutic target to attend to and prevent various diseases. In different ways, developing new drugs by molecular docking to use molecules with pharmacological characteristics capable of interacting in the regions of resistin to hinder/block the interaction between resistin and their receptors (Δ-DCN, TLR4, and CAP-1) and by promoting health to reduce overweight and obesity, and this could generate lower plasma serum resistin values, so this review remarks the potential of resistin as multipotential therapeutic target.\",\"PeriodicalId\":9026,\"journal\":{\"name\":\"Biointerface Research in Applied Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerface Research in Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/briac134.384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Being overweight and obese are risk factors that have increased during the COVID-19 pandemic; these factors increase the white adipose tissue (WAT) that increases the release of adipokines (adiponectin, leptin, and resistin). So, obesity provokes the expansion of adipose tissue; it induces changes in their macrophages of pro-inflammatory cytokines (M2 to M1). These changes increase the resistin levels with effects on the metabolism, inflammation process, glucose homeostasis, and insulin resistance, promote cell proliferation and migration, and even serve as a biomarker for tumorigenesis. Therefore, resistin is proposed as a multipotential therapeutic target to treat different diseases, between chronic-degenerative and some types of cancer, because resistin has characteristics that give it a high probability to be a therapeutic target to attend to and prevent various diseases. In different ways, developing new drugs by molecular docking to use molecules with pharmacological characteristics capable of interacting in the regions of resistin to hinder/block the interaction between resistin and their receptors (Δ-DCN, TLR4, and CAP-1) and by promoting health to reduce overweight and obesity, and this could generate lower plasma serum resistin values, so this review remarks the potential of resistin as multipotential therapeutic target.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.