Javad Rahmannezhad, Hyeon Dam Jeong, Seung Chan Ryu, Heon Sang Lee
{"title":"通过测量聚碳酸酯-碳纤维复合材料的瞬态流变模拟取向形态","authors":"Javad Rahmannezhad, Hyeon Dam Jeong, Seung Chan Ryu, Heon Sang Lee","doi":"10.1007/s13367-022-00031-0","DOIUrl":null,"url":null,"abstract":"<div><p>We prepared carbon fiber (CF) reinforced polycarbonates (CFR-PC) by co-rotating twin screw extruder and injection molding. We simulated the orientational morphology of CFR-PC by inverse calculation from the measured transient stress curve using 8 mm disk rotational rheometer. The shear stress evolution was expressed by a function of the Fredholm integral of the first kind; total stress was expressed by a linear combination contributed from a stress at each orientation state. We employed an extended White–Metzner model with Dinh–Armstrong flow-fiber coupling term as a constitutive equation for the evaluation of stress at each orientation state. The probability density of each orientation state was determined by the Tikhonov regularization method from the measured stress overshoot. Finally, the orientation distribution functions (ODFs) of CFR-PC were determined by maximum entropy method from the determined probability density of orientation state. For the CFR-PCs, the simulated morphology by the ODF was well consistent with the morphology obtained by optical microscopy.</p></div>","PeriodicalId":683,"journal":{"name":"Korea-Australia Rheology Journal","volume":"34 3","pages":"197 - 210"},"PeriodicalIF":2.2000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulated orientational morphology from the measured transient rheology of polycarbonate–carbon fiber composites\",\"authors\":\"Javad Rahmannezhad, Hyeon Dam Jeong, Seung Chan Ryu, Heon Sang Lee\",\"doi\":\"10.1007/s13367-022-00031-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prepared carbon fiber (CF) reinforced polycarbonates (CFR-PC) by co-rotating twin screw extruder and injection molding. We simulated the orientational morphology of CFR-PC by inverse calculation from the measured transient stress curve using 8 mm disk rotational rheometer. The shear stress evolution was expressed by a function of the Fredholm integral of the first kind; total stress was expressed by a linear combination contributed from a stress at each orientation state. We employed an extended White–Metzner model with Dinh–Armstrong flow-fiber coupling term as a constitutive equation for the evaluation of stress at each orientation state. The probability density of each orientation state was determined by the Tikhonov regularization method from the measured stress overshoot. Finally, the orientation distribution functions (ODFs) of CFR-PC were determined by maximum entropy method from the determined probability density of orientation state. For the CFR-PCs, the simulated morphology by the ODF was well consistent with the morphology obtained by optical microscopy.</p></div>\",\"PeriodicalId\":683,\"journal\":{\"name\":\"Korea-Australia Rheology Journal\",\"volume\":\"34 3\",\"pages\":\"197 - 210\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korea-Australia Rheology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13367-022-00031-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea-Australia Rheology Journal","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13367-022-00031-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Simulated orientational morphology from the measured transient rheology of polycarbonate–carbon fiber composites
We prepared carbon fiber (CF) reinforced polycarbonates (CFR-PC) by co-rotating twin screw extruder and injection molding. We simulated the orientational morphology of CFR-PC by inverse calculation from the measured transient stress curve using 8 mm disk rotational rheometer. The shear stress evolution was expressed by a function of the Fredholm integral of the first kind; total stress was expressed by a linear combination contributed from a stress at each orientation state. We employed an extended White–Metzner model with Dinh–Armstrong flow-fiber coupling term as a constitutive equation for the evaluation of stress at each orientation state. The probability density of each orientation state was determined by the Tikhonov regularization method from the measured stress overshoot. Finally, the orientation distribution functions (ODFs) of CFR-PC were determined by maximum entropy method from the determined probability density of orientation state. For the CFR-PCs, the simulated morphology by the ODF was well consistent with the morphology obtained by optical microscopy.
期刊介绍:
The Korea-Australia Rheology Journal is devoted to fundamental and applied research with immediate or potential value in rheology, covering the science of the deformation and flow of materials. Emphases are placed on experimental and numerical advances in the areas of complex fluids. The journal offers insight into characterization and understanding of technologically important materials with a wide range of practical applications.