Marfran C. D. Santos, Camilo L. M. Morais, K. M. Lima
{"title":"用于病毒识别的ATR-FTIR光谱:一种强大的替代方法","authors":"Marfran C. D. Santos, Camilo L. M. Morais, K. M. Lima","doi":"10.3233/bsi-200203","DOIUrl":null,"url":null,"abstract":"In pandemic times, like the one we are witnessing for COVID-19, the discussion about new efficient and rapid techniques for diagnosis of diseases is more evident. In this mini-review, we present to the virological scientific community the potential of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy as a diagnosis technique. Herein, we explain the operation of this technique, as well as its advantages over standard methods. In addition, we also present the multivariate analysis tools that can be used to extract useful information from the data towards classification purposes. Tools such as Principal Component Analysis (PCA), Successive Projections Algorithm (SPA), Genetic Algorithm (GA) and Linear and Quadratic Discriminant Analysis (LDA and QDA) are covered, including examples of published studies. Finally, the advantages and disadvantages of ATR-FTIR spectroscopy are emphasized, as well as future prospects in this field of study that is only growing. One of the main aims of this paper is to encourage the scientific community to explore the potential of this spectroscopic tool to detect changes in biological samples such as those caused by the presence of viruses.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/bsi-200203","citationCount":"23","resultStr":"{\"title\":\"ATR-FTIR spectroscopy for virus identification: A powerful alternative\",\"authors\":\"Marfran C. D. Santos, Camilo L. M. Morais, K. M. Lima\",\"doi\":\"10.3233/bsi-200203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In pandemic times, like the one we are witnessing for COVID-19, the discussion about new efficient and rapid techniques for diagnosis of diseases is more evident. In this mini-review, we present to the virological scientific community the potential of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy as a diagnosis technique. Herein, we explain the operation of this technique, as well as its advantages over standard methods. In addition, we also present the multivariate analysis tools that can be used to extract useful information from the data towards classification purposes. Tools such as Principal Component Analysis (PCA), Successive Projections Algorithm (SPA), Genetic Algorithm (GA) and Linear and Quadratic Discriminant Analysis (LDA and QDA) are covered, including examples of published studies. Finally, the advantages and disadvantages of ATR-FTIR spectroscopy are emphasized, as well as future prospects in this field of study that is only growing. One of the main aims of this paper is to encourage the scientific community to explore the potential of this spectroscopic tool to detect changes in biological samples such as those caused by the presence of viruses.\",\"PeriodicalId\":44239,\"journal\":{\"name\":\"Biomedical Spectroscopy and Imaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/bsi-200203\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Spectroscopy and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/bsi-200203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/bsi-200203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
ATR-FTIR spectroscopy for virus identification: A powerful alternative
In pandemic times, like the one we are witnessing for COVID-19, the discussion about new efficient and rapid techniques for diagnosis of diseases is more evident. In this mini-review, we present to the virological scientific community the potential of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy as a diagnosis technique. Herein, we explain the operation of this technique, as well as its advantages over standard methods. In addition, we also present the multivariate analysis tools that can be used to extract useful information from the data towards classification purposes. Tools such as Principal Component Analysis (PCA), Successive Projections Algorithm (SPA), Genetic Algorithm (GA) and Linear and Quadratic Discriminant Analysis (LDA and QDA) are covered, including examples of published studies. Finally, the advantages and disadvantages of ATR-FTIR spectroscopy are emphasized, as well as future prospects in this field of study that is only growing. One of the main aims of this paper is to encourage the scientific community to explore the potential of this spectroscopic tool to detect changes in biological samples such as those caused by the presence of viruses.
期刊介绍:
Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.