Nahla Hussein, Esraa Ali, A. El-Hakim, A. Tabll, Asmaa El-Shershaby, Azza Salamony, M. Shaheen, Ibrahim Ali, Mahmoud Elshall, Y. Shahein
{"title":"通过快速内部ELISA评估针对重组严重急性呼吸系统综合征冠状病毒2型受体结合结构域的特异性人类抗体。","authors":"Nahla Hussein, Esraa Ali, A. El-Hakim, A. Tabll, Asmaa El-Shershaby, Azza Salamony, M. Shaheen, Ibrahim Ali, Mahmoud Elshall, Y. Shahein","doi":"10.3233/hab-220003","DOIUrl":null,"url":null,"abstract":"BACKGROUND\nThe recently emerged SARS-CoV-2 caused a global pandemic since the last two years. The urgent need to control the spread of the virus and rapid application of the suitable health measures raised the importance of available, rapid, and accurate diagnostic approaches.\n\n\nOBJECTIVE\nThe purpose of this study is to describe a rapid in-house optimized ELISA based on the expression of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in a prokaryotic system.\n\n\nMETHODS\nWe show the expression of the 30 kDa recombinant SARS-CoV-2 RBD-6×His in five different E. coli strains (at 28∘C using 0.25mM IPTG) including the expression strain E. coli BL21 (DE3) Rosetta Gami. SARS-CoV-2 rRBD-6×His protein was purified, refolded, and used as an antigen coat to assess antibody response in human sera against SARS-CoV-2 infection.\n\n\nRESULTS\nThe assessment was carried out using a total of 155 human sero-positive and negative SARS-CoV-2 antibodies. The ELISA showed 69.5% sensitivity, 88% specificity, 78.5% agreement, a positive predictive value (PPV) of 92.3%, and a negative predictive value of 56.5%. Moreover, the optical density (OD) values of positive samples significantly correlated with the commercial kit titers.\n\n\nCONCLUSIONS\nIn conclusion, specific human antibodies against SARS-CoV-2 spike protein were detected by rapid in-house ELISA in sera of human COVID-19-infected patients. The availability of this in-house ELISA protocol would be valuable for various diagnostic and epidemiological applications, particularly in developing countries. Future studies are planned for the use of the generated SARS-CoV-2 rRBD-6×His protein in vaccine development and other diagnostic applications.","PeriodicalId":53564,"journal":{"name":"Human Antibodies","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of specific human antibodies against recombinant SARS-CoV-2 receptor binding domain by rapid in-house ELISA.\",\"authors\":\"Nahla Hussein, Esraa Ali, A. El-Hakim, A. Tabll, Asmaa El-Shershaby, Azza Salamony, M. Shaheen, Ibrahim Ali, Mahmoud Elshall, Y. Shahein\",\"doi\":\"10.3233/hab-220003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\nThe recently emerged SARS-CoV-2 caused a global pandemic since the last two years. The urgent need to control the spread of the virus and rapid application of the suitable health measures raised the importance of available, rapid, and accurate diagnostic approaches.\\n\\n\\nOBJECTIVE\\nThe purpose of this study is to describe a rapid in-house optimized ELISA based on the expression of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in a prokaryotic system.\\n\\n\\nMETHODS\\nWe show the expression of the 30 kDa recombinant SARS-CoV-2 RBD-6×His in five different E. coli strains (at 28∘C using 0.25mM IPTG) including the expression strain E. coli BL21 (DE3) Rosetta Gami. SARS-CoV-2 rRBD-6×His protein was purified, refolded, and used as an antigen coat to assess antibody response in human sera against SARS-CoV-2 infection.\\n\\n\\nRESULTS\\nThe assessment was carried out using a total of 155 human sero-positive and negative SARS-CoV-2 antibodies. The ELISA showed 69.5% sensitivity, 88% specificity, 78.5% agreement, a positive predictive value (PPV) of 92.3%, and a negative predictive value of 56.5%. Moreover, the optical density (OD) values of positive samples significantly correlated with the commercial kit titers.\\n\\n\\nCONCLUSIONS\\nIn conclusion, specific human antibodies against SARS-CoV-2 spike protein were detected by rapid in-house ELISA in sera of human COVID-19-infected patients. The availability of this in-house ELISA protocol would be valuable for various diagnostic and epidemiological applications, particularly in developing countries. Future studies are planned for the use of the generated SARS-CoV-2 rRBD-6×His protein in vaccine development and other diagnostic applications.\",\"PeriodicalId\":53564,\"journal\":{\"name\":\"Human Antibodies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Antibodies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/hab-220003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/hab-220003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Assessment of specific human antibodies against recombinant SARS-CoV-2 receptor binding domain by rapid in-house ELISA.
BACKGROUND
The recently emerged SARS-CoV-2 caused a global pandemic since the last two years. The urgent need to control the spread of the virus and rapid application of the suitable health measures raised the importance of available, rapid, and accurate diagnostic approaches.
OBJECTIVE
The purpose of this study is to describe a rapid in-house optimized ELISA based on the expression of the receptor binding domain (RBD) of the SARS-CoV-2 spike protein in a prokaryotic system.
METHODS
We show the expression of the 30 kDa recombinant SARS-CoV-2 RBD-6×His in five different E. coli strains (at 28∘C using 0.25mM IPTG) including the expression strain E. coli BL21 (DE3) Rosetta Gami. SARS-CoV-2 rRBD-6×His protein was purified, refolded, and used as an antigen coat to assess antibody response in human sera against SARS-CoV-2 infection.
RESULTS
The assessment was carried out using a total of 155 human sero-positive and negative SARS-CoV-2 antibodies. The ELISA showed 69.5% sensitivity, 88% specificity, 78.5% agreement, a positive predictive value (PPV) of 92.3%, and a negative predictive value of 56.5%. Moreover, the optical density (OD) values of positive samples significantly correlated with the commercial kit titers.
CONCLUSIONS
In conclusion, specific human antibodies against SARS-CoV-2 spike protein were detected by rapid in-house ELISA in sera of human COVID-19-infected patients. The availability of this in-house ELISA protocol would be valuable for various diagnostic and epidemiological applications, particularly in developing countries. Future studies are planned for the use of the generated SARS-CoV-2 rRBD-6×His protein in vaccine development and other diagnostic applications.
期刊介绍:
Human Antibodies is an international journal designed to bring together all aspects of human hybridomas and antibody technology under a single, cohesive theme. This includes fundamental research, applied science and clinical applications. Emphasis in the published articles is on antisera, monoclonal antibodies, fusion partners, EBV transformation, transfections, in vitro immunization, defined antigens, tissue reactivity, scale-up production, chimeric antibodies, autoimmunity, natural antibodies/immune response, anti-idiotypes, and hybridomas secreting interesting growth factors. Immunoregulatory molecules, including T cell hybridomas, will also be featured.