用于多维灵敏度分析的高效随机序列研究

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2022-02-15 DOI:10.1515/mcma-2022-2101
I. Dimov, V. Todorov, K. Sabelfeld
{"title":"用于多维灵敏度分析的高效随机序列研究","authors":"I. Dimov, V. Todorov, K. Sabelfeld","doi":"10.1515/mcma-2022-2101","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we present and study highly efficient stochastic methods, including optimal super convergent methods for multidimensional sensitivity analysis of large-scale ecological models and digital twins. The computational efficiency (in terms of relative error and computational time) of the stochastic algorithms for multidimensional numerical integration has been studied to analyze the sensitivity of the digital ecosystem, namely the UNI-DEM model, which is particularly appropriate for connecting and orchestrating the many autonomous systems, infrastructures, platforms and data that constitute the bedrock of predicting and analyzing the consequences of possible climate changes. We deploy the digital twin paradigm in our consideration to study the output to variation of input emissions of the anthropogenic pollutants and to evaluate the rates of several chemical reactions.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"28 1","pages":"1 - 12"},"PeriodicalIF":0.8000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A study of highly efficient stochastic sequences for multidimensional sensitivity analysis\",\"authors\":\"I. Dimov, V. Todorov, K. Sabelfeld\",\"doi\":\"10.1515/mcma-2022-2101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we present and study highly efficient stochastic methods, including optimal super convergent methods for multidimensional sensitivity analysis of large-scale ecological models and digital twins. The computational efficiency (in terms of relative error and computational time) of the stochastic algorithms for multidimensional numerical integration has been studied to analyze the sensitivity of the digital ecosystem, namely the UNI-DEM model, which is particularly appropriate for connecting and orchestrating the many autonomous systems, infrastructures, platforms and data that constitute the bedrock of predicting and analyzing the consequences of possible climate changes. We deploy the digital twin paradigm in our consideration to study the output to variation of input emissions of the anthropogenic pollutants and to evaluate the rates of several chemical reactions.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"28 1\",\"pages\":\"1 - 12\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2022-2101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2022-2101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 10

摘要

摘要在本文中,我们提出并研究了高效的随机方法,包括用于大型生态模型多维灵敏度分析的最优超收敛方法和数字孪生方法。研究了多维数值积分随机算法的计算效率(在相对误差和计算时间方面),以分析数字生态系统的敏感性,即UNI-DEM模型,该模型特别适合连接和协调许多自治系统、基础设施,平台和数据构成了预测和分析可能的气候变化后果的基础。我们在考虑中使用了数字孪生范式来研究人为污染物的输出与输入排放的变化,并评估几种化学反应的速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of highly efficient stochastic sequences for multidimensional sensitivity analysis
Abstract In this paper, we present and study highly efficient stochastic methods, including optimal super convergent methods for multidimensional sensitivity analysis of large-scale ecological models and digital twins. The computational efficiency (in terms of relative error and computational time) of the stochastic algorithms for multidimensional numerical integration has been studied to analyze the sensitivity of the digital ecosystem, namely the UNI-DEM model, which is particularly appropriate for connecting and orchestrating the many autonomous systems, infrastructures, platforms and data that constitute the bedrock of predicting and analyzing the consequences of possible climate changes. We deploy the digital twin paradigm in our consideration to study the output to variation of input emissions of the anthropogenic pollutants and to evaluate the rates of several chemical reactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Asymmetric kernel method in the study of strong stability of the PH/M/1 queuing system Random walk on spheres method for solving anisotropic transient diffusion problems and flux calculations Strong approximation of a two-factor stochastic volatility model under local Lipschitz condition On the estimation of periodic signals in the diffusion process using a high-frequency scheme Stochastic simulation of electron transport in a strong electrical field in low-dimensional heterostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1