Sreekanth Pannala*, Vladimir Shtern, Lei Chen and David West,
{"title":"用于烃类高温热化学转化为乙炔的新型环形射流涡反应器","authors":"Sreekanth Pannala*, Vladimir Shtern, Lei Chen and David West, ","doi":"10.1021/acsengineeringau.2c00009","DOIUrl":null,"url":null,"abstract":"<p >This paper describes a novel reactor for acetylene synthesis by high-temperature thermochemical conversion of paraffin hydrocarbons. The reactor utilizes a conical annular swirling jet, which becomes extremely thin as swirl intensifies. The small thickness provides fast mass, momentum, and heat transfer to facilitate the rapid heating and conversion of the reactants. We employ a unique wall shape for the converging–diverging combustion zone, which maintains relatively low reactor wall temperature and avoids the need for external cooling. The wall shape and angle were derived from an approximate analytical solution of the Navier–Stokes and energy equations, which leads to the maximal jet flow rate and avoids wall separation under extreme high swirling flow conditions. The analytical solution predicts a high-speed swirling flow, which includes a thin annular conical diverging jet where mass, momentum, and heat fluxes concentrate, and chemical reactions can occur rapidly. Across the jet, the temperature sharply drops from its large near-axis value to its small near-wall value. We illustrate and study these features with the help of numerical simulations of the Navier–Stokes, energy, and species equations and proof-of-concept experiments. The experiments confirm the thin annular conical shape of the flame, which is blue, transparent, and well anchored near the throat. The present device produces a flow pattern, which minimizes the reactor wall temperature, while producing light olefins with high selectivity and conversion.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"2 5","pages":"406–420"},"PeriodicalIF":4.3000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00009","citationCount":"2","resultStr":"{\"title\":\"Novel Annular Jet Vortex Reactor for High-Temperature Thermochemical Conversion of Hydrocarbons to Acetylene\",\"authors\":\"Sreekanth Pannala*, Vladimir Shtern, Lei Chen and David West, \",\"doi\":\"10.1021/acsengineeringau.2c00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This paper describes a novel reactor for acetylene synthesis by high-temperature thermochemical conversion of paraffin hydrocarbons. The reactor utilizes a conical annular swirling jet, which becomes extremely thin as swirl intensifies. The small thickness provides fast mass, momentum, and heat transfer to facilitate the rapid heating and conversion of the reactants. We employ a unique wall shape for the converging–diverging combustion zone, which maintains relatively low reactor wall temperature and avoids the need for external cooling. The wall shape and angle were derived from an approximate analytical solution of the Navier–Stokes and energy equations, which leads to the maximal jet flow rate and avoids wall separation under extreme high swirling flow conditions. The analytical solution predicts a high-speed swirling flow, which includes a thin annular conical diverging jet where mass, momentum, and heat fluxes concentrate, and chemical reactions can occur rapidly. Across the jet, the temperature sharply drops from its large near-axis value to its small near-wall value. We illustrate and study these features with the help of numerical simulations of the Navier–Stokes, energy, and species equations and proof-of-concept experiments. The experiments confirm the thin annular conical shape of the flame, which is blue, transparent, and well anchored near the throat. The present device produces a flow pattern, which minimizes the reactor wall temperature, while producing light olefins with high selectivity and conversion.</p>\",\"PeriodicalId\":29804,\"journal\":{\"name\":\"ACS Engineering Au\",\"volume\":\"2 5\",\"pages\":\"406–420\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.2c00009\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Engineering Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.2c00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Novel Annular Jet Vortex Reactor for High-Temperature Thermochemical Conversion of Hydrocarbons to Acetylene
This paper describes a novel reactor for acetylene synthesis by high-temperature thermochemical conversion of paraffin hydrocarbons. The reactor utilizes a conical annular swirling jet, which becomes extremely thin as swirl intensifies. The small thickness provides fast mass, momentum, and heat transfer to facilitate the rapid heating and conversion of the reactants. We employ a unique wall shape for the converging–diverging combustion zone, which maintains relatively low reactor wall temperature and avoids the need for external cooling. The wall shape and angle were derived from an approximate analytical solution of the Navier–Stokes and energy equations, which leads to the maximal jet flow rate and avoids wall separation under extreme high swirling flow conditions. The analytical solution predicts a high-speed swirling flow, which includes a thin annular conical diverging jet where mass, momentum, and heat fluxes concentrate, and chemical reactions can occur rapidly. Across the jet, the temperature sharply drops from its large near-axis value to its small near-wall value. We illustrate and study these features with the help of numerical simulations of the Navier–Stokes, energy, and species equations and proof-of-concept experiments. The experiments confirm the thin annular conical shape of the flame, which is blue, transparent, and well anchored near the throat. The present device produces a flow pattern, which minimizes the reactor wall temperature, while producing light olefins with high selectivity and conversion.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)