Daniela A. Torres, A. Kopa, S. Barron, R. McCormick, R. White, Caprice Gray
{"title":"配电用低电感微同轴电缆的特性研究","authors":"Daniela A. Torres, A. Kopa, S. Barron, R. McCormick, R. White, Caprice Gray","doi":"10.4071/IMAPS.729301","DOIUrl":null,"url":null,"abstract":"Low-impedance microcoaxial cables have been developed to supply power to microchips. These uniquely low-inductance cables are enabled by a very thin dielectric compared with a conventional 50-Ω cable. These cables will be used in a novel packaging platform in which traditional interconnects are replaced by microscale coaxial cables. This method saves time and cost for small production volumes and custom electronics, compared with high density interconnects and silicon interposer technologies. These microcoaxial cables are designed to have minimal impedance to meet the stringent power supply requirements of today's electronics. As a concrete example, we consider a Kintex 7 Field-Programmable Gate Array (FPGA). To power this chip with interconnect lengths of 25 mm and a voltage ripple less than 30 mV, a resistance of 3.20–6.40 mΩ/mm and an inductance of 12–15 pH/mm is needed. The tight voltage ripple constraint is what makes this device challenging to design power distribution for. One cable fabricated by Draper, to achieve these power requirements, is the focus of this article. The Draper cable consists of a 127-μm Copper core, 12-μm polyesterimide dielectric layer, and 55-μm gold shield. The measured resistance per unit length at DC, inductance per unit length, capacitance per unit length, and characteristic impedance of the Draper cable are 2.0 mΩ/mm, 40 pH/mm, 118 pF/mm, and 6.56 Ω, respectively.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Characterization of Low-Inductance Microcoaxial Cables for Power Distribution\",\"authors\":\"Daniela A. Torres, A. Kopa, S. Barron, R. McCormick, R. White, Caprice Gray\",\"doi\":\"10.4071/IMAPS.729301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-impedance microcoaxial cables have been developed to supply power to microchips. These uniquely low-inductance cables are enabled by a very thin dielectric compared with a conventional 50-Ω cable. These cables will be used in a novel packaging platform in which traditional interconnects are replaced by microscale coaxial cables. This method saves time and cost for small production volumes and custom electronics, compared with high density interconnects and silicon interposer technologies. These microcoaxial cables are designed to have minimal impedance to meet the stringent power supply requirements of today's electronics. As a concrete example, we consider a Kintex 7 Field-Programmable Gate Array (FPGA). To power this chip with interconnect lengths of 25 mm and a voltage ripple less than 30 mV, a resistance of 3.20–6.40 mΩ/mm and an inductance of 12–15 pH/mm is needed. The tight voltage ripple constraint is what makes this device challenging to design power distribution for. One cable fabricated by Draper, to achieve these power requirements, is the focus of this article. The Draper cable consists of a 127-μm Copper core, 12-μm polyesterimide dielectric layer, and 55-μm gold shield. The measured resistance per unit length at DC, inductance per unit length, capacitance per unit length, and characteristic impedance of the Draper cable are 2.0 mΩ/mm, 40 pH/mm, 118 pF/mm, and 6.56 Ω, respectively.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/IMAPS.729301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/IMAPS.729301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Characterization of Low-Inductance Microcoaxial Cables for Power Distribution
Low-impedance microcoaxial cables have been developed to supply power to microchips. These uniquely low-inductance cables are enabled by a very thin dielectric compared with a conventional 50-Ω cable. These cables will be used in a novel packaging platform in which traditional interconnects are replaced by microscale coaxial cables. This method saves time and cost for small production volumes and custom electronics, compared with high density interconnects and silicon interposer technologies. These microcoaxial cables are designed to have minimal impedance to meet the stringent power supply requirements of today's electronics. As a concrete example, we consider a Kintex 7 Field-Programmable Gate Array (FPGA). To power this chip with interconnect lengths of 25 mm and a voltage ripple less than 30 mV, a resistance of 3.20–6.40 mΩ/mm and an inductance of 12–15 pH/mm is needed. The tight voltage ripple constraint is what makes this device challenging to design power distribution for. One cable fabricated by Draper, to achieve these power requirements, is the focus of this article. The Draper cable consists of a 127-μm Copper core, 12-μm polyesterimide dielectric layer, and 55-μm gold shield. The measured resistance per unit length at DC, inductance per unit length, capacitance per unit length, and characteristic impedance of the Draper cable are 2.0 mΩ/mm, 40 pH/mm, 118 pF/mm, and 6.56 Ω, respectively.
期刊介绍:
The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.