Zefeng Ge , Xi Cao , Zhenting Zha , Yuna Ma , Mingxun Zeng , Yuqing Wu , Zenghui Hou , Huiyan Zhang
{"title":"煤焦气化反应动力学与碳结构相关性的建立","authors":"Zefeng Ge , Xi Cao , Zhenting Zha , Yuna Ma , Mingxun Zeng , Yuqing Wu , Zenghui Hou , Huiyan Zhang","doi":"10.1016/j.crcon.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>For a gasification process, the char-CO<sub>2</sub> gasification is the controlling step worthwhile to be deeply investigated. The article chosen corn stalk (CS), poplar sawdust (PS) and bagasse residue (BR) as the typical waste species derived from agricultural, forestal and industrial sources. The char-CO<sub>2</sub> gasification behavior, reaction kinetics and carbon structure were studied to reveal the intrinsic factors determining the reaction kinetics. Generally, the carbon conversion and maximum conversion rate were influenced by the feedstocks species and char preparation temperatures, as influenced by ash proportion, potassium content in ash and carbon structure of char. The char-CO<sub>2</sub> reaction for CS was subject more to the catalytic effect of alkali compositions, while pore structure affected more the gasification reaction for PS char. The isoconversional kinetic analysis indicated that the gasification reaction became stable at carbon conversion of 0.5. Subsequently, sectionalized kinetic parameters were calculated for the initial gasification temperature to the temperature reaching 50% conversion. The result showed that high initial gasification temperature increased the char-CO<sub>2</sub> gasification barrier to hardly start the reaction but accelerate the reaction rate. The carbon structure analyses further clarified that the reaction activation energy was highly related to the microcrystalline structure of carbon, while the reaction rate was more determined by carbon pore structure.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"6 2","pages":"Pages 67-75"},"PeriodicalIF":6.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Establishment of correlation between reaction kinetics and carbon structures in the char gasification process\",\"authors\":\"Zefeng Ge , Xi Cao , Zhenting Zha , Yuna Ma , Mingxun Zeng , Yuqing Wu , Zenghui Hou , Huiyan Zhang\",\"doi\":\"10.1016/j.crcon.2023.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a gasification process, the char-CO<sub>2</sub> gasification is the controlling step worthwhile to be deeply investigated. The article chosen corn stalk (CS), poplar sawdust (PS) and bagasse residue (BR) as the typical waste species derived from agricultural, forestal and industrial sources. The char-CO<sub>2</sub> gasification behavior, reaction kinetics and carbon structure were studied to reveal the intrinsic factors determining the reaction kinetics. Generally, the carbon conversion and maximum conversion rate were influenced by the feedstocks species and char preparation temperatures, as influenced by ash proportion, potassium content in ash and carbon structure of char. The char-CO<sub>2</sub> reaction for CS was subject more to the catalytic effect of alkali compositions, while pore structure affected more the gasification reaction for PS char. The isoconversional kinetic analysis indicated that the gasification reaction became stable at carbon conversion of 0.5. Subsequently, sectionalized kinetic parameters were calculated for the initial gasification temperature to the temperature reaching 50% conversion. The result showed that high initial gasification temperature increased the char-CO<sub>2</sub> gasification barrier to hardly start the reaction but accelerate the reaction rate. The carbon structure analyses further clarified that the reaction activation energy was highly related to the microcrystalline structure of carbon, while the reaction rate was more determined by carbon pore structure.</p></div>\",\"PeriodicalId\":52958,\"journal\":{\"name\":\"Carbon Resources Conversion\",\"volume\":\"6 2\",\"pages\":\"Pages 67-75\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Resources Conversion\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588913323000121\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913323000121","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Establishment of correlation between reaction kinetics and carbon structures in the char gasification process
For a gasification process, the char-CO2 gasification is the controlling step worthwhile to be deeply investigated. The article chosen corn stalk (CS), poplar sawdust (PS) and bagasse residue (BR) as the typical waste species derived from agricultural, forestal and industrial sources. The char-CO2 gasification behavior, reaction kinetics and carbon structure were studied to reveal the intrinsic factors determining the reaction kinetics. Generally, the carbon conversion and maximum conversion rate were influenced by the feedstocks species and char preparation temperatures, as influenced by ash proportion, potassium content in ash and carbon structure of char. The char-CO2 reaction for CS was subject more to the catalytic effect of alkali compositions, while pore structure affected more the gasification reaction for PS char. The isoconversional kinetic analysis indicated that the gasification reaction became stable at carbon conversion of 0.5. Subsequently, sectionalized kinetic parameters were calculated for the initial gasification temperature to the temperature reaching 50% conversion. The result showed that high initial gasification temperature increased the char-CO2 gasification barrier to hardly start the reaction but accelerate the reaction rate. The carbon structure analyses further clarified that the reaction activation energy was highly related to the microcrystalline structure of carbon, while the reaction rate was more determined by carbon pore structure.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.